ترغب بنشر مسار تعليمي؟ اضغط هنا

Epidemic analysis of COVID-19 in China by dynamical modeling

77   0   0.0 ( 0 )
 نشر من قبل Liu Hong
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The outbreak of novel coronavirus-caused pneumonia (COVID-19) in Wuhan has attracted worldwide attention. Here, we propose a generalized SEIR model to analyze this epidemic. Based on the public data of National Health Commission of China from Jan. 20th to Feb. 9th, 2020, we reliably estimate key epidemic parameters and make predictions on the inflection point and possible ending time for 5 different regions. According to optimistic estimation, the epidemics in Beijing and Shanghai will end soon within two weeks, while for most part of China, including the majority of cities in Hubei province, the success of anti-epidemic will be no later than the middle of March. The situation in Wuhan is still very severe, at least based on public data until Feb. 15th. We expect it will end up at the beginning of April. Moreover, by inverse inference, we find the outbreak of COVID-19 in Mainland, Hubei province and Wuhan all can be dated back to the end of December 2019, and the doubling time is around two days at the early stage.

قيم البحث

اقرأ أيضاً

In this paper, based on the Akaike information criterion, root mean square error and robustness coefficient, a rational evaluation of various epidemic models/methods, including seven empirical functions, four statistical inference methods and five dy namical models, on their forecasting abilities is carried out. With respect to the outbreak data of COVID-19 epidemics in China, we find that before the inflection point, all models fail to make a reliable prediction. The Logistic function consistently underestimates the final epidemic size, while the Gompertzs function makes an overestimation in all cases. Towards statistical inference methods, the methods of sequential Bayesian and time-dependent reproduction number are more accurate at the late stage of an epidemic. And the transition-like behavior of exponential growth method from underestimation to overestimation with respect to the inflection point might be useful for constructing a more reliable forecast. Compared to ODE-based SIR, SEIR and SEIR-AHQ models, the SEIR-QD and SEIR-PO models generally show a better performance on studying the COVID-19 epidemics, whose success we believe could be attributed to a proper trade-off between model complexity and fitting accuracy. Our findings not only are crucial for the forecast of COVID-19 epidemics, but also may apply to other infectious diseases.
We present Coronavirus disease 2019 (COVID-19) statistics in China dataset: daily statistics of the COVID-19 outbreak in China at the city/county level. For each city/country, we include the six most important numbers for epidemic research: daily new infections, accumulated infections, daily new recoveries, accumulated recoveries, daily new deaths, and accumulated deaths. We cross validate the dataset and the estimate error rate is about 0.04%. We then give several examples to show how to trace the spreading in particular cities or provinces, and also contrast the development of COVID-19 in all cities in China at the early, middle and late stages. We hope this dataset can help researchers around the world better understand the spreading dynamics of COVID-19 at a regional level, to inform intervention and mitigation strategies for policymakers.
79 - Reza Sameni 2020
In this research, we study the propagation patterns of epidemic diseases such as the COVID-19 coronavirus, from a mathematical modeling perspective. The study is based on an extensions of the well-known susceptible-infected-recovered (SIR) family of compartmental models. It is shown how social measures such as distancing, regional lockdowns, quarantine and global public health vigilance, influence the model parameters, which can eventually change the mortality rates and active contaminated cases over time, in the real world. As with all mathematical models, the predictive ability of the model is limited by the accuracy of the available data and to the so-called textit{level of abstraction} used for modeling the problem. In order to provide the broader audience of researchers a better understanding of spreading patterns of epidemic diseases, a short introduction on biological systems modeling is also presented and the Matlab source codes for the simulations are provided online.
In late December 2019, a novel strand of Coronavirus (SARS-CoV-2) causing a severe, potentially fatal respiratory syndrome (COVID-19) was identified in Wuhan, Hubei Province, China and is causing outbreaks in multiple world countries, soon becoming a pandemic. Italy has now become the most hit country outside of Asia: on March 16, 2020, the Italian Civil Protection documented a total of 27980 confirmed cases and 2158 deaths of people tested positive for SARS-CoV-2. In the context of an emerging infectious disease outbreak, it is of paramount importance to predict the trend of the epidemic in order to plan an effective control strategy and to determine its impact. This paper proposes a new epidemic model that discriminates between infected individuals depending on whether they have been diagnosed and on the severity of their symptoms. The distinction between diagnosed and non-diagnosed is important because non-diagnosed individuals are more likely to spread the infection than diagnosed ones, since the latter are typically isolated, and can explain misperceptions of the case fatality rate and of the seriousness of the epidemic phenomenon. Being able to predict the amount of patients that will develop life-threatening symptoms is important since the disease frequently requires hospitalisation (and even Intensive Care Unit admission) and challenges the healthcare system capacity. We show how the basic reproduction number can be redefined in the new framework, thus capturing the potential for epidemic containment. Simulation results are compared with real data on the COVID-19 epidemic in Italy, to show the validity of the model and compare different possible predicted scenarios depending on the adopted countermeasures.
We develop an agent-based model on a network meant to capture features unique to COVID-19 spread through a small residential college. We find that a safe reopening requires strong policy from administrators combined with cautious behavior from studen ts. Strong policy includes weekly screening tests with quick turnaround and halving the campus population. Cautious behavior from students means wearing facemasks, socializing less, and showing up for COVID-19 testing. We also find that comprehensive testing and facemasks are the most effective single interventions, building closures can lead to infection spikes in other areas depending on student behavior, and faster return of test results significantly reduces total infections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا