ﻻ يوجد ملخص باللغة العربية
The outbreak of novel coronavirus-caused pneumonia (COVID-19) in Wuhan has attracted worldwide attention. Here, we propose a generalized SEIR model to analyze this epidemic. Based on the public data of National Health Commission of China from Jan. 20th to Feb. 9th, 2020, we reliably estimate key epidemic parameters and make predictions on the inflection point and possible ending time for 5 different regions. According to optimistic estimation, the epidemics in Beijing and Shanghai will end soon within two weeks, while for most part of China, including the majority of cities in Hubei province, the success of anti-epidemic will be no later than the middle of March. The situation in Wuhan is still very severe, at least based on public data until Feb. 15th. We expect it will end up at the beginning of April. Moreover, by inverse inference, we find the outbreak of COVID-19 in Mainland, Hubei province and Wuhan all can be dated back to the end of December 2019, and the doubling time is around two days at the early stage.
In this paper, based on the Akaike information criterion, root mean square error and robustness coefficient, a rational evaluation of various epidemic models/methods, including seven empirical functions, four statistical inference methods and five dy
We present Coronavirus disease 2019 (COVID-19) statistics in China dataset: daily statistics of the COVID-19 outbreak in China at the city/county level. For each city/country, we include the six most important numbers for epidemic research: daily new
In this research, we study the propagation patterns of epidemic diseases such as the COVID-19 coronavirus, from a mathematical modeling perspective. The study is based on an extensions of the well-known susceptible-infected-recovered (SIR) family of
In late December 2019, a novel strand of Coronavirus (SARS-CoV-2) causing a severe, potentially fatal respiratory syndrome (COVID-19) was identified in Wuhan, Hubei Province, China and is causing outbreaks in multiple world countries, soon becoming a
We develop an agent-based model on a network meant to capture features unique to COVID-19 spread through a small residential college. We find that a safe reopening requires strong policy from administrators combined with cautious behavior from studen