ﻻ يوجد ملخص باللغة العربية
We introduce SLM Lab, a software framework for reproducible reinforcement learning (RL) research. SLM Lab implements a number of popular RL algorithms, provides synchronous and asynchronous parallel experiment execution, hyperparameter search, and result analysis. RL algorithms in SLM Lab are implemented in a modular way such that differences in algorithm performance can be confidently ascribed to differences between algorithms, not between implementations. In this work we present the design choices behind SLM Lab and use it to produce a comprehensive single-codebase RL algorithm benchmark. In addition, as a consequence of SLM Labs modular design, we introduce and evaluate a discrete-action variant of the Soft Actor-Critic algorithm (Haarnoja et al., 2018) and a hybrid synchronous/asynchronous training method for RL agents.
Deep reinforcement learning (DRL) is an emerging methodology that is transforming the way many complicated transportation decision-making problems are tackled. Researchers have been increasingly turning to this powerful learning-based methodology to
In this paper, we present a new class of Markov decision processes (MDPs), called Tsallis MDPs, with Tsallis entropy maximization, which generalizes existing maximum entropy reinforcement learning (RL). A Tsallis MDP provides a unified framework for
Inverse reinforcement learning (IRL) is the problem of learning the preferences of an agent from the observations of its behavior on a task. While this problem has been well investigated, the related problem of {em online} IRL---where the observation
robosuite is a simulation framework for robot learning powered by the MuJoCo physics engine. It offers a modular design for creating robotic tasks as well as a suite of benchmark environments for reproducible research. This paper discusses the key sy
Understanding the strengths and weaknesses of machine learning (ML) algorithms is crucial for determine their scope of application. Here, we introduce the DIverse and GENerative ML Benchmark (DIGEN) - a collection of synthetic datasets for comprehens