ترغب بنشر مسار تعليمي؟ اضغط هنا

robosuite: A Modular Simulation Framework and Benchmark for Robot Learning

147   0   0.0 ( 0 )
 نشر من قبل Yuke Zhu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

robosuite is a simulation framework for robot learning powered by the MuJoCo physics engine. It offers a modular design for creating robotic tasks as well as a suite of benchmark environments for reproducible research. This paper discusses the key system modules and the benchmark environments of our new release robosuite v1.0.


قيم البحث

اقرأ أيضاً

We present a challenging new benchmark and learning-environment for robot learning: RLBench. The benchmark features 100 completely unique, hand-designed tasks ranging in difficulty, from simple target reaching and door opening, to longer multi-stage tasks, such as opening an oven and placing a tray in it. We provide an array of both proprioceptive observations and visual observations, which include rgb, depth, and segmentation masks from an over-the-shoulder stereo camera and an eye-in-hand monocular camera. Uniquely, each task comes with an infinite supply of demos through the use of motion planners operating on a series of waypoints given during task creation time; enabling an exciting flurry of demonstration-based learning. RLBench has been designed with scalability in mind; new tasks, along with their motion-planned demos, can be easily created and then verified by a series of tools, allowing users to submit their own tasks to the RLBench task repository. This large-scale benchmark aims to accelerate progress in a number of vision-guided manipulation research areas, including: reinforcement learning, imitation learning, multi-task learning, geometric computer vision, and in particular, few-shot learning. With the benchmarks breadth of tasks and demonstrations, we propose the first large-scale few-shot challenge in robotics. We hope that the scale and diversity of RLBench offers unparalleled research opportunities in the robot learning community and beyond.
Model-based methods are the dominant paradigm for controlling robotic systems, though their efficacy depends heavily on the accuracy of the model used. Deep neural networks have been used to learn models of robot dynamics from data, but they suffer f rom data-inefficiency and the difficulty to incorporate prior knowledge. We introduce Structured Mechanical Models, a flexible model class for mechanical systems that are data-efficient, easily amenable to prior knowledge, and easily usable with model-based control techniques. The goal of this work is to demonstrate the benefits of using Structured Mechanical Models in lieu of black-box neural networks when modeling robot dynamics. We demonstrate that they generalize better from limited data and yield more reliable model-based controllers on a variety of simulated robotic domains.
We introduce SLM Lab, a software framework for reproducible reinforcement learning (RL) research. SLM Lab implements a number of popular RL algorithms, provides synchronous and asynchronous parallel experiment execution, hyperparameter search, and re sult analysis. RL algorithms in SLM Lab are implemented in a modular way such that differences in algorithm performance can be confidently ascribed to differences between algorithms, not between implementations. In this work we present the design choices behind SLM Lab and use it to produce a comprehensive single-codebase RL algorithm benchmark. In addition, as a consequence of SLM Labs modular design, we introduce and evaluate a discrete-action variant of the Soft Actor-Critic algorithm (Haarnoja et al., 2018) and a hybrid synchronous/asynchronous training method for RL agents.
The exponentially increasing advances in robotics and machine learning are facilitating the transition of robots from being confined to controlled industrial spaces to performing novel everyday tasks in domestic and urban environments. In order to ma ke the presence of robots safe as well as comfortable for humans, and to facilitate their acceptance in public environments, they are often equipped with social abilities for navigation and interaction. Socially compliant robot navigation is increasingly being learned from human observations or demonstrations. We argue that these techniques that typically aim to mimic human behavior do not guarantee fair behavior. As a consequence, social navigation models can replicate, promote, and amplify societal unfairness such as discrimination and segregation. In this work, we investigate a framework for diminishing bias in social robot navigation models so that robots are equipped with the capability to plan as well as adapt their paths based on both physical and social demands. Our proposed framework consists of two components: textit{learning} which incorporates social context into the learning process to account for safety and comfort, and textit{relearning} to detect and correct potentially harmful outcomes before the onset. We provide both technological and societal analysis using three diverse case studies in different social scenarios of interaction. Moreover, we present ethical implications of deploying robots in social environments and propose potential solutions. Through this study, we highlight the importance and advocate for fairness in human-robot interactions in order to promote more equitable social relationships, roles, and dynamics and consequently positively influence our society.
Recent research in embodied AI has been boosted by the use of simulation environments to develop and train robot learning approaches. However, the use of simulation has skewed the attention to tasks that only require what robotics simulators can simu late: motion and physical contact. We present iGibson 2.0, an open-source simulation environment that supports the simulation of a more diverse set of household tasks through three key innovations. First, iGibson 2.0 supports object states, including temperature, wetness level, cleanliness level, and toggled and sliced states, necessary to cover a wider range of tasks. Second, iGibson 2.0 implements a set of predicate logic functions that map the simulator states to logic states like Cooked or Soaked. Additionally, given a logic state, iGibson 2.0 can sample valid physical states that satisfy it. This functionality can generate potentially infinite instances of tasks with minimal effort from the users. The sampling mechanism allows our scenes to be more densely populated with small objects in semantically meaningful locations. Third, iGibson 2.0 includes a virtual reality (VR) interface to immerse humans in its scenes to collect demonstrations. As a result, we can collect demonstrations from humans on these new types of tasks, and use them for imitation learning. We evaluate the new capabilities of iGibson 2.0 to enable robot learning of novel tasks, in the hope of demonstrating the potential of this new simulator to support new research in embodied AI. iGibson 2.0 and its new dataset will be publicly available at http://svl.stanford.edu/igibson/.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا