ﻻ يوجد ملخص باللغة العربية
Deep reinforcement learning (DRL) is an emerging methodology that is transforming the way many complicated transportation decision-making problems are tackled. Researchers have been increasingly turning to this powerful learning-based methodology to solve challenging problems across transportation fields. While many promising applications have been reported in the literature, there remains a lack of comprehensive synthesis of the many DRL algorithms and their uses and adaptations. The objective of this paper is to fill this gap by conducting a comprehensive, synthesized review of DRL applications in transportation. We start by offering an overview of the DRL mathematical background, popular and promising DRL algorithms, and some highly effective DRL extensions. Building on this overview, a systematic investigation of about 150 DRL studies that have appeared in the transportation literature, divided into seven different categories, is performed. Building on this review, we continue to examine the applicability, strengths, shortcomings, and common and application-specific issues of DRL techniques with regard to their applications in transportation. In the end, we recommend directions for future research and present available resources for actually implementing DRL.
Since the introduction of DQN, a vast majority of reinforcement learning research has focused on reinforcement learning with deep neural networks as function approximators. New methods are typically evaluated on a set of environments that have now be
We introduce SLM Lab, a software framework for reproducible reinforcement learning (RL) research. SLM Lab implements a number of popular RL algorithms, provides synchronous and asynchronous parallel experiment execution, hyperparameter search, and re
Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep learning models with multilayer processing architecture is showing better performance as compared to the shallow or traditional classifi
Deep reinforcement learning has led to many recent-and groundbreaking-advancements. However, these advances have often come at the cost of both the scale and complexity of the underlying RL algorithms. Increases in complexity have in turn made it mor
The popularity of deep reinforcement learning (DRL) methods in economics have been exponentially increased. DRL through a wide range of capabilities from reinforcement learning (RL) and deep learning (DL) for handling sophisticated dynamic business e