ترغب بنشر مسار تعليمي؟ اضغط هنا

Generative and reproducible benchmarks for comprehensive evaluation of machine learning classifiers

114   0   0.0 ( 0 )
 نشر من قبل Patryk Orzechowski
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the strengths and weaknesses of machine learning (ML) algorithms is crucial for determine their scope of application. Here, we introduce the DIverse and GENerative ML Benchmark (DIGEN) - a collection of synthetic datasets for comprehensive, reproducible, and interpretable benchmarking of machine learning algorithms for classification of binary outcomes. The DIGEN resource consists of 40 mathematical functions which map continuous features to discrete endpoints for creating synthetic datasets. These 40 functions were discovered using a heuristic algorithm designed to maximize the diversity of performance among multiple popular machine learning algorithms thus providing a useful test suite for evaluating and comparing new methods. Access to the generative functions facilitates understanding of why a method performs poorly compared to other algorithms thus providing ideas for improvement. The resource with extensive documentation and analyses is open-source and available on GitHub.



قيم البحث

اقرأ أيضاً

We introduce SLM Lab, a software framework for reproducible reinforcement learning (RL) research. SLM Lab implements a number of popular RL algorithms, provides synchronous and asynchronous parallel experiment execution, hyperparameter search, and re sult analysis. RL algorithms in SLM Lab are implemented in a modular way such that differences in algorithm performance can be confidently ascribed to differences between algorithms, not between implementations. In this work we present the design choices behind SLM Lab and use it to produce a comprehensive single-codebase RL algorithm benchmark. In addition, as a consequence of SLM Labs modular design, we introduce and evaluate a discrete-action variant of the Soft Actor-Critic algorithm (Haarnoja et al., 2018) and a hybrid synchronous/asynchronous training method for RL agents.
Despite the availability of benchmark machine learning (ML) repositories (e.g., UCI, OpenML), there is no standard evaluation strategy yet capable of pointing out which is the best set of datasets to serve as gold standard to test different ML algori thms. In recent studies, Item Response Theory (IRT) has emerged as a new approach to elucidate what should be a good ML benchmark. This work applied IRT to explore the well-known OpenML-CC18 benchmark to identify how suitable it is on the evaluation of classifiers. Several classifiers ranging from classical to ensembles ones were evaluated using IRT models, which could simultaneously estimate dataset difficulty and classifiers ability. The Glicko-2 rating system was applied on the top of IRT to summarize the innate ability and aptitude of classifiers. It was observed that not all datasets from OpenML-CC18 are really useful to evaluate classifiers. Most datasets evaluated in this work (84%) contain easy instances in general (e.g., around 10% of difficult instances only). Also, 80% of the instances in half of this benchmark are very discriminating ones, which can be of great use for pairwise algorithm comparison, but not useful to push classifiers abilities. This paper presents this new evaluation methodology based on IRT as well as the tool decodIRT, developed to guide IRT estimation over ML benchmarks.
In this work, we propose an introspection technique for deep neural networks that relies on a generative model to instigate salient editing of the input image for model interpretation. Such modification provides the fundamental interventional operati on that allows us to obtain answers to counterfactual inquiries, i.e., what meaningful change can be made to the input image in order to alter the prediction. We demonstrate how to reveal interesting properties of the given classifiers by utilizing the proposed introspection approach on both the MNIST and the CelebA dataset.
Strong empirical evidence that one machine-learning algorithm A outperforms another one B ideally calls for multiple trials optimizing the learning pipeline over sources of variation such as data sampling, data augmentation, parameter initialization, and hyperparameters choices. This is prohibitively expensive, and corners are cut to reach conclusions. We model the whole benchmarking process, revealing that variance due to data sampling, parameter initialization and hyperparameter choice impact markedly the results. We analyze the predominant comparison methods used today in the light of this variance. We show a counter-intuitive result that adding more sources of variation to an imperfect estimator approaches better the ideal estimator at a 51 times reduction in compute cost. Building on these results, we study the error rate of detecting improvements, on five different deep-learning tasks/architectures. This study leads us to propose recommendations for performance comparisons.
Graphs are nowadays ubiquitous in the fields of signal processing and machine learning. As a tool used to express relationships between objects, graphs can be deployed to various ends: I) clustering of vertices, II) semi-supervised classification of vertices, III) supervised classification of graph signals, and IV) denoising of graph signals. However, in many practical cases graphs are not explicitly available and must therefore be inferred from data. Validation is a challenging endeavor that naturally depends on the downstream task for which the graph is learnt. Accordingly, it has often been difficult to compare the efficacy of different algorithms. In this work, we introduce several ease-to-use and publicly released benchmarks specifically designed to reveal the relative merits and limitations of graph inference methods. We also contrast some of the most prominent techniques in the literature.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا