ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface

51   0   0.0 ( 0 )
 نشر من قبل Nacho Pascual
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene can develop large magnetic moments in custom crafted open-shell nanostructures such as triangulene, a triangular piece of graphene with zigzag edges. Current methods of engineering graphene nano-systems on surfaces succeeded in producing atomically precise open-shell structures, but demonstration of their net spin remains elusive to date. Here, we fabricate triangulene-like graphene systems and demonstrate that they possess a spin $S=1$ ground state. Scanning tunnelling spectroscopy identifies the fingerprint of an underscreened $S=1$ Kondo state on rev{these} flakes at low temperatures, signaling the dominant ferromagnetic interactions between two spins. Combined with simulations based on the meanfield Hubbard model, we show that this $S=1$ $pi$-paramagnetism is robust, and can be manipulated to a $S=1/2$ state by adding additional H-atoms to the radical sites. rev{Our results demonstrate that $pi$-paramagnetism of high-spin graphene flakes can survive on surfaces, opening the door to study the quantum behaviour of interacting $pi$-spins in graphene systems.


قيم البحث

اقرأ أيضاً

We report the ab initio study of rare-earth adatoms (Gd) on an insulating surface. This surface is of interest because of previous studies by scanning tunneling microscopy showing spin excitations of transition metal adatoms. The present work is the first study of rare-earth spin-coupled adatoms, as well as the geometry effect of spin coupling, and the underlying mechanism of ferromagnetic coupling. The exchange coupling between Gd atoms on the surface is calculated to be antiferromagnetic in a linear geometry and ferromagnetic in a diagonal geometry, by considering their collinear spins and using the PBE+U exchange correlation. We also find the Gd dimers in these two geometries are similar to the nearest-neighbor (NN) and the next-NN Gd atoms in GdN bulk. We analyze how much direct exchange, superexchange, and RKKY interactions contribute to the exchange coupling for both geometries by additional first-principles calculations of related model systems.
91 - W. Sheng , M. Sun , A. Zhou 2013
The effects of substrate on electronic and optical properties of triangular and hexagonal graphene nanoflakes with armchair edges are investigated by using a configuration interaction approach beyond double excitation scheme. The quasiparticle correc tion to the energy gap and exciton binding energy are found to be dominated by the long-range Coulomb interactions and exhibit similar dependence on the dielectric constant of the substrate, which leads to a cancellation of their contributions to the optical gap. As a result, the optical gaps are shown to be insensitive to the dielectric environment and unexpectedly close to the single-particle gaps.
In recent years there has been significant debate on whether the edge type of graphene nanoflakes (GNF) or graphene quantum dots (GQD) are relevant for their electronic structure, thermal stability and optical properties. Using computer simulations, we have proven that there is a fundamental difference in the calculated absorption spectra between samples of the same shape, similar size but different edge type, namely, armchair or zigzag edges. These can be explained by the presence of electronic structures near the Fermi level which are localized on the edges. These features are also evident from the dependence of band gap on the GNF size, which shows three very distinct trends for different shapes and edge geometries.
We have measured the impact of atomic hydrogen adsorption on the electronic transport properties of graphene sheets as a function of hydrogen coverage and initial, pre-hydrogenation field-effect mobility. Our results are compatible with hydrogen adso rbates inducing intervalley mixing by exerting a short-range scattering potential. The saturation coverages for different devices are found to be proportional to their initial mobility, indicating that the number of native scatterers is proportional to the saturation coverage of hydrogen. By extrapolating this proportionality, we show that the field-effect mobility can reach $1.5 times 10^4$ cm$^2$/V sec in the absence of the hydrogen-adsorbing sites. This affinity to hydrogen is the signature of the most dominant type of native scatterers in graphene-based field-effect transistors on SiO$_2$.
144 - Enrico Rossi , S. Das Sarma 2008
We calculate the carrier density dependent ground state properties of graphene in the presence of random charged impurities in the substrate taking into account disorder and interaction effects non-perturbatively on an equal footing in a self-consist ent theoretical formalism. We provide detailed quantitative results on the dependence of the disorder-induced spatially inhomogeneous two-dimensional carrier density distribution on the external gate bias, the impurity density, and the impurity location. We find that the interplay between disorder and interaction is strong, particularly at lower impurity densities. We show that for the currently available typical graphene samples, inhomogeneity dominates graphene physics at low ($lesssim 10^{12}$ cm$^{-2}$) carrier density with the density fluctuations becoming larger than the average density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا