ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Properties of Graphene Nanoflakes: Shape Matters

148   0   0.0 ( 0 )
 نشر من قبل Candela Mansilla Wettstein M.Sc.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years there has been significant debate on whether the edge type of graphene nanoflakes (GNF) or graphene quantum dots (GQD) are relevant for their electronic structure, thermal stability and optical properties. Using computer simulations, we have proven that there is a fundamental difference in the calculated absorption spectra between samples of the same shape, similar size but different edge type, namely, armchair or zigzag edges. These can be explained by the presence of electronic structures near the Fermi level which are localized on the edges. These features are also evident from the dependence of band gap on the GNF size, which shows three very distinct trends for different shapes and edge geometries.

قيم البحث

اقرأ أيضاً

67 - W. Sheng , M. Sun , A. Zhou 2013
The effects of substrate on electronic and optical properties of triangular and hexagonal graphene nanoflakes with armchair edges are investigated by using a configuration interaction approach beyond double excitation scheme. The quasiparticle correc tion to the energy gap and exciton binding energy are found to be dominated by the long-range Coulomb interactions and exhibit similar dependence on the dielectric constant of the substrate, which leads to a cancellation of their contributions to the optical gap. As a result, the optical gaps are shown to be insensitive to the dielectric environment and unexpectedly close to the single-particle gaps.
The effects of edge covalent functionalization on the structural, electronic and optical properties of elongated armchair graphene nanoflakes (AGNFs) are analyzed in detail for a wide range of terminations, within the ramework of Hartree-Fock-based s emi-empirical methods. The chemical features of the functional groups, their distribution and the resulting system symmetry are identified as the key factors that determine the modification of structural and optoelectronic features. While the electronic gap is always reduced in presence of substituents, functionalization-induced distortions contribute to the observed lowering by about 35-55%. This effect is paired with a red shift of the first optical peak, corresponding to about 75% of the total optical gap reduction. Further, the functionalization pattern and the specific features of the edge-substituent bond are found to influence the strength and the character of the low energy excitations. All these effects are discussed for flakes of different width, representing the three families of AGNFs.
We study optical properties of two dimensional silicene using density functional theory based calculations. Our results on optical response property calculations show that they strongly depend on direction of polarization of light, hence the optical absorption spectra are different for light polarized parallel and perpendicular to plane of silicence. The optical absorption spectra of silicene possess two major peaks: (i) a sharp peak at 1.74 eV due to transition from pi to pi* states and (ii) a broad peak in range of 4-10 eV due to excitation of sigma states to conduction bands. We also investigate the effect of external influences such as (a) transverse static electric field and (b) doping of hydrogen atoms (hydrogenation) on optical properties of silicene. Firstly, with electric field, it is observed that band gap can be opened up in silicene at Fermi level by breaking the inversion symmetry. We see appreciable changes in optical absorption due to band gap opening. Secondly, hydrogenation in silicene strongly modifies the hybridization and our geometry analysis indicates that the hybridization in silicene goes from mixture of sp^2 + sp^3 to purely sp^3. Therefore, there is no pi electron present in the system. Consequently, the electronic structure and optical absorption spectra of silicene get modified and it undergoes a transition from semi-metal to semiconductor due to hydrogenation.
93 - Jianpeng Liu , Xi Dai 2019
We study the anomalous Hall effect, magneto-optical properties, and nonlinear optical properties of twisted bilayer graphene (TBG) aligned with hexagonal boron nitride (hBN) substrate as well as twisted double bilayer graphene systems. We show that n on-vanishing valley polarizations in twisted graphene systems would give rise to anomalous Hall effect which can be tuned by in-plane magnetic fields. The valley polarized states are also associated with giant Faraday/Kerr rotations in the terahertz frequency regime. Moreover, both hBN-aligned TBG and TDBG exhibit colossal nonlinear optical responses by virtue of the inversion-symmetry breaking, the small bandwidth, and the small excitation gaps of the systems. Our calculations indicate that in both systems the nonlinear optical conductivities of the shift currents are on the order of $10^3,mu$A/V$^2$; and the second harmonic generation (SHG) susceptibilities are on the order of $10^6,$pm/V in the terahertz frequency regime. Moreover, in TDBG with $ABtextrm{-}BA$ stacking, we find that a finite orbital magnetization would generate a new component $sigma^{x}_{xx} $ of the nonlinear photoconductivity tensor; while in $AB$-$AB$ stacked TDBG with vertical electric fields, the valley polarization and orbital magnetization would make significant contributions to the $sigma^{y}_{xx}$ component of the photoconductivity tensor. These nonlinear photo-conductivities are proportional to the orbital magnetizations of the systems, thus they are expected to exhibit hysteresis behavior in response to out-of-plane magnetic fields.
The long spin-diffusion length, spin-lifetimes and excellent optical absorption coefficient of graphene provide an excellent platform for building opto-electronic devices as well as spin-based logic in a nanometer regime. In this study, by employing density functional theory and its time-dependent version, we provide a detailed analysis of how the size and shape of graphene nanoflakes can be used to alter their magnetic structure and optical properties. As the edges of zigzag graphene nanoribbons are known to align anti-ferromagnetically and armchair nanoribbons are typically non-magnetic, a combination of both in a nanoflake geometry can be used to optimize the ground-state magnetic structure and tailor the exchange coupling decisive for ferro- or anti-ferromagnetic edge magnetism, thereby offering the possibility to optimize the external fields needed to switch magnetic ordering. Most importantly, we show that the magnetic state alters the optical response of the flake leading to the possibility of opto-spintronic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا