ﻻ يوجد ملخص باللغة العربية
The effects of substrate on electronic and optical properties of triangular and hexagonal graphene nanoflakes with armchair edges are investigated by using a configuration interaction approach beyond double excitation scheme. The quasiparticle correction to the energy gap and exciton binding energy are found to be dominated by the long-range Coulomb interactions and exhibit similar dependence on the dielectric constant of the substrate, which leads to a cancellation of their contributions to the optical gap. As a result, the optical gaps are shown to be insensitive to the dielectric environment and unexpectedly close to the single-particle gaps.
Atomically thin materials are exceedingly susceptible to their dielectric environment. For transition metal dichalcogenides, sample placement on a substrate or encapsulation in hexagonal boron nitride (hBN) are frequently used. In this paper we show
We investigate the many-body properties of graphene on top of a piezoelectric substrate, focusing on the interaction between the graphene electrons and the piezoelectric acoustic phonons. We calculate the electron and phonon self-energies as well as
Graphene on a dielectric substrate exhibits spatial doping inhomogeneities, forming electron-hole puddles. Understanding and controlling the latter is of crucial importance for unraveling many of graphenes fundamental properties at the Dirac point. H
In recent years there has been significant debate on whether the edge type of graphene nanoflakes (GNF) or graphene quantum dots (GQD) are relevant for their electronic structure, thermal stability and optical properties. Using computer simulations,
We report localization of fractional quantum Hall (QH) quasiparticles on graphene antidots. By studying coherent tunneling through the localized QH edge modes on the antidot, we measured the QH quasiparticle charges to be approximately $pm e/3$ at fr