ﻻ يوجد ملخص باللغة العربية
Production forecasting is a key step to design the future development of a reservoir. A classical way to generate such forecasts consists in simulating future production for numerical models representative of the reservoir. However, identifying such models can be very challenging as they need to be constrained to all available data. In particular, they should reproduce past production data, which requires to solve a complex non-linear inverse problem. In this paper, we thus propose to investigate the potential of machine learning algorithms to predict the future production of a reservoir based on past production data without model calibration. We focus more specifically on robust online aggregation, a deterministic approach that provides a robust framework to make forecasts on a regular basis. This method does not rely on any specific assumption or need for stochastic modeling. Forecasts are first simulated for a set of base reservoir models representing the prior uncertainty, and then combined to predict production at the next time step. The weight associated to each forecast is related to its past performance. Three different algorithms are considered for weight computations: the exponentially weighted average algorithm, ridge regression and the Lasso regression. They are applied on a synthetic reservoir case study, the Brugge case, for sequential predictions. To estimate the potential of development scenarios, production forecasts are needed on long periods of time without intermediary data acquisition. An extension of the deterministic aggregation approach is thus proposed in this paper to provide such multi-step-ahead forecasts.
We consider the setting of online linear regression for arbitrary deterministic sequences, with the square loss. We are interested in the aim set by Bartlett et al. (2015): obtain regret bounds that hold uniformly over all competitor vectors. When th
We consider the problem of aggregating models learned from sequestered, possibly heterogeneous datasets. Exploiting tools from Bayesian nonparametrics, we develop a general meta-modeling framework that learns shared global latent structures by identi
Forecasting the particulate matter (PM) concentration in South Korea has become urgently necessary owing to its strong negative impact on human life. In most statistical or machine learning methods, independent and identically distributed data, for e
In distributed, or privacy-preserving learning, we are often given a set of probabilistic models estimated from different local repositories, and asked to combine them into a single model that gives efficient statistical estimation. A simple method i
We consider the problem of learning over non-stationary ranking streams. The rankings can be interpreted as the preferences of a population and the non-stationarity means that the distribution of preferences changes over time. Our goal is to learn, i