ﻻ يوجد ملخص باللغة العربية
Effects of pressure on the electronic structure, electron-phonon interaction, and superconductivity of the high entropy alloy (TaNb)$_{0.67}$(HfZrTi)$_{0.33}$ are studied in the pressure range 0 - 100 GPa. The electronic structure is calculated using the Korringa-Kohn-Rostoker method with the coherent potential approximation. Effects of pressure on the lattice dynamics are simulated using the Debye-Gr{u}neisen model and the Gr{u}neisen parameter at ambient conditions. In addition, the Debye temperature and Sommerfeld electronic heat capacity coefficient were experimentally determined. The electron-phonon coupling parameter $lambda$ is calculated using the McMillan-Hopfield parameters and computed within the rigid muffin tin approximation. We find, that the system undergoes the Lifshitz transition, as one of the bands crosses the Fermi level at elevated pressures. The electron-phonon coupling parameter $lambda$ decreases above 10 GPa. The calculated superconducting $T_c$ increases up to 40 - 50 GPa and, later, is stabilized at the larger value than for the ambient conditions, in agreement with the experimental findings. Our results show that the experimentally observed evolution of $T_c$ with pressure in (TaNb)$_{0.67}$(HfZrTi)$_{0.33}$ can be well explained by the classical electron-phonon mechanism.
FeSe$_{1-x}$Te$_{x}$ superconductors manifest some intriguing electronic properties depending on the value of $x$. In FeSe single crystal, the nematic phase and Dirac band structure have been observed, while topological surface superconductivity with
Research on high-entropy-alloy (HEA) superconductors is a growing field in material science. In this study, we explored new HEA-type superconductors and discovered a CuAl2-type superconductor Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2 with a HEA-type transition me
The effects of pressure on the superconducting properties of a Bi-based layered superconductor La2O2Bi3Ag0.6Sn0.4S6, which possesses a four-layer-type conducting layer, have been studied through the electrical resistance and magnetic susceptibility m
We have studied the structural and superconductivity properties of the compound LaFeAsO0.9F0.1 under pressures up to 32GPa using synchrotron radiation and diamond anvil cells. We obtain an ambient pressure bulk modulus K_0 = 78(2)GPa, compressibility
High-pressure superconductivity in a rare-earth doped Ca0.86Pr0.14Fe2As2 single crystalline sample has been studied up to 12 GPa and temperatures down to 11 K using designer diamond anvil cell under a quasi-hydrostatic pressure medium. The electrical