ترغب بنشر مسار تعليمي؟ اضغط هنا

High Pressure Effects on the Superconductivity in Rare-Earth Doped CaFe2As2

141   0   0.0 ( 0 )
 نشر من قبل Walter Uhoya
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-pressure superconductivity in a rare-earth doped Ca0.86Pr0.14Fe2As2 single crystalline sample has been studied up to 12 GPa and temperatures down to 11 K using designer diamond anvil cell under a quasi-hydrostatic pressure medium. The electrical resistance measurements were complemented by high pressure and low temperature x-ray diffraction studies at a synchrotron source. The electrical resistance measurements show an intriguing observation of superconductivity under pressure, with Tc as high as ~51 K at 1.9 GPa, presenting the highest Tc reported in the intermetallic class of 1-2-2 iron-based superconductors. The resistive transition observed suggests a possible existence of two superconducting phases at low pressures of 0.5 GPa: one phase starting at Tc1 ~48 K, and the other starting at Tc2~16 K. The two superconducting transitions show distinct variations with increasing pressure. High pressure low temperature structural studies indicate that the superconducting phase is a collapsed tetragonal ThCr2Si2-type (122) crystal structure. Our high pressure studies indicate that high Tc state attributed to non-bulk superconductivity in rare-earth doped 1-2-2 iron-based superconductors is stable under compression over a broad pressure range.



قيم البحث

اقرأ أيضاً

500 - S. R. Saha , N. P. Butch , T. Drye 2011
Aliovalent rare earth substitution into the alkaline earth site of CaFe2As2 single-crystals is used to fine-tune structural, magnetic and electronic properties of this iron-based superconducting system. Neutron and single crystal x-ray scattering exp eriments indicate that an isostructural collapse of the tetragonal unit cell can be controllably induced at ambient pressures by choice of substituent ion size. This instability is driven by the interlayer As-As anion separation, resulting in an unprecedented thermal expansion coefficient of $180times 10^{-6}$ K$^{-1}$. Electrical transport and magnetic susceptibility measurements reveal abrupt changes in the physical properties through the collapse as a function of temperature, including a reconstruction of the electronic structure. Superconductivity with onset transition temperatures as high as 47 K is stabilized by the suppression of antiferromagnetic order via chemical pressure, electron doping or a combination of both. Extensive investigations are performed to understand the observations of partial volume-fraction diamagnetic screening, ruling out extrinsic sources such as strain mechanisms, surface states or foreign phases as the cause of this superconducting phase that appears to be stable in both collapsed and uncollapsed structures.
121 - F. Y. Wei 2013
In rare-earth doped single crystalline CaFe2As2, the mysterious small volume fraction which superconducts up to 49 K, much higher than the bulk Tc ~ 30s K, has prompted a long search for a hidden variable that could enhance the Tc by more than 30% in iron-based superconductors of the same structure. Here we report a chemical, structural, and magnetic study of CaFe2As2 systematically doped with La, Ce, Pr, and Nd. Coincident with the high Tc phase, we find extreme magnetic anisotropy, accompanied by an unexpected doping-independent Tc and equally unexpected superparamagnetic clusters associated with As vacancies. These observations lead us to conjecture that the tantalizing Tc enhancement may be associated with naturally occurring chemical interfaces and may thus provide a new paradigm in the search for superconductors with higher Tc.
We report a systematic and ab-initio electronic structure calculation of Ca0.75 M0.25 Fe2 As2 with M = Ca, Sr, Eu, La, Ce, Pr, Nd, Pm, Sm, Na, K, Rb. The recently reported experimentally observed structural trends in rare earths-doped CaFe2 As2 compo unds are successfully predicted and a complete theoretical description of the pressure induced orthorhombic to collapsed tetragonal transition is given. We demonstrate that the transition pressure is reduced by electron doping and rises linearly with the ionic size of the dopants. We discuss the implications of our description for the realization of a superconducting phase.
75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P = 4.7 and 10.8 kbar, the temperature dependences of nuclear-spin-lattice relaxation rate (1/T1) measur ed in the tetragonal phase show no coherence peak just below Tc(P) and decrease with decreasing temperature. The superconductivity is gapless at P = 4.7 kbar but evolves to that with multiple gaps at P = 10.8 kbar. We find that the superconductivity appears near a quantum critical point under pressures in the range 4.7 kbar < P < 10.8 kbar. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.
We have investigated the charge dynamics and the nature of many-body interactions in La- and Pr- doped CaFe2As2. From the infrared part of the optical conductivity, we discover that the scattering rate of mobile carriers above 200 K exhibits saturati on at the Mott-Ioffe-Regel limit of metallic transport. However, the dc resistivity continues to increase with temperature above 200 K due to the loss of Drude spectral weight. The loss of Drude spectral weight with increasing temperature is seen in a wide temperature range in the uncollapsed tetragonal phase, and this spectral weight is recovered at energy scales about one order of magnitude larger than the Fermi energy scale in these semimetals. The phenomena noted above have been observed previously in other correlated metals in which the dominant interactions are electronic in origin. Further evidence of significant electron-electron interactions is obtained from the presence of quadratic temperature and frequency-dependent terms in the scattering rate at low temperatures and frequencies in the uncollapsed tetragonal structures of La-doped and Pr-doped CaFe2As2. For temperatures below the structure collapse transition in Pr-doped CaFe2As2 at 70 K, the scattering rate decreases due to weakening of electronic correlations, and the Drude spectral weight decreases due to modification of the low-energy electronic structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا