ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic transport properties and hydrostatic pressure effect of FeSe$_{0.67}$Te$_{0.33}$ single crystals free of phase separation

226   0   0.0 ( 0 )
 نشر من قبل Xiangzhuo Xing
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

FeSe$_{1-x}$Te$_{x}$ superconductors manifest some intriguing electronic properties depending on the value of $x$. In FeSe single crystal, the nematic phase and Dirac band structure have been observed, while topological surface superconductivity with the Majorana bound state was found in the crystal of $x sim 0.55$. Therefore, the electronic properties of single crystals with $0 < x leq 0.5$ are crucial for probing the evolution of those intriguing properties as well as their relations. However, this study is still left blank due to the lack of single crystals because of phase separation. Here, we report the synthesis, magnetization, electronic transport properties, and hydrostatic pressure effect of FeSe$_{0.67}$Te$_{0.33}$ single crystals free of phase separation. A structural (nematic) transition is visible at $T_{s} = 39$ K, below which the resistivity exhibits a Fermi-liquid behavior. Analysis of upper critical fields suggests that spin-paramagnetic effect should be taken into account for both $H parallel c$ axis and $H parallel ab$ plane. A crossover from the low-$H$ quadratic to the high-$H$ quasi-linear behavior is observed in the magnetoresistance, signifying the possible existence of Dirac-cone state. Besides, the strong temperature dependence of Hall coefficient, violation of (modified) Kohlers rule, and two-band model analysis indicate the multiband effects in FeSe$_{0.67}$Te$_{0.33}$ single crystals. Hydrostatic pressure measurements reveal that $T_{s}$ is quickly suppressed with pressure while $T_{c}$ is monotonically increased up to 2.31 GPa, indicating the competition between nematicity and superconductivity. No signature of magnetic order that has been detected in FeSe$_{1-x}$S$_{x}$ is observed. Our findings fill up the blank of the knowledge on the basic properties of FeSe$_{1-x}$Te$_{x}$ system with low-Te concentrations.



قيم البحث

اقرأ أيضاً

Effects of pressure on the electronic structure, electron-phonon interaction, and superconductivity of the high entropy alloy (TaNb)$_{0.67}$(HfZrTi)$_{0.33}$ are studied in the pressure range 0 - 100 GPa. The electronic structure is calculated using the Korringa-Kohn-Rostoker method with the coherent potential approximation. Effects of pressure on the lattice dynamics are simulated using the Debye-Gr{u}neisen model and the Gr{u}neisen parameter at ambient conditions. In addition, the Debye temperature and Sommerfeld electronic heat capacity coefficient were experimentally determined. The electron-phonon coupling parameter $lambda$ is calculated using the McMillan-Hopfield parameters and computed within the rigid muffin tin approximation. We find, that the system undergoes the Lifshitz transition, as one of the bands crosses the Fermi level at elevated pressures. The electron-phonon coupling parameter $lambda$ decreases above 10 GPa. The calculated superconducting $T_c$ increases up to 40 - 50 GPa and, later, is stabilized at the larger value than for the ambient conditions, in agreement with the experimental findings. Our results show that the experimentally observed evolution of $T_c$ with pressure in (TaNb)$_{0.67}$(HfZrTi)$_{0.33}$ can be well explained by the classical electron-phonon mechanism.
We report flux free growth of superconducting FeSe single crystals by an easy and versatile high temperature melt and slow cooling method for first time. The room temperature XRD on the surface of the piece of such obtained crystals showed single 101 plane of Beta-FeSe tetragonal phase. The bulk powder XRD, being obtained by crushing the part of crystal chunk showed majority tetragonal and minority FeSe hexagonal crystalline phases. Detailed HRTEM images along with SAED (selected area electron diffraction) showed the abundance of both majority and minority FeSe phases. Both transport (RT) and magnetization (MT) exhibited superconductivity at below around 10K. Interestingly, the magnetization signal of these crystals is dominated by the magnetism of minority magnetic phase, and hence the isothermal magnetization (MH) at 4K was seen to be ferromagnetic (FM) like. Transport (R-T) measurements under magnetic field showed superconductivity onset at below 12K, and R = 0 (Tc) at 9K. Superconducting transition temperature (Tc) decreases with applied field to around 6K at 7Tesla, with dTc/dH of 0.4K/Tesla, giving rise to an Hc2 value of around 50 Tesla, 30 Tesla and 20 Tesla for Rn = 90, 50 and 10 percent respectively. FeSe single crystal activation energy is calculated from Thermally Activated Flux Flow (TAFF) model which is found to decreases with field.
The effects of pressure generated in a liquid medium, clamp, pressure cell on the in-plane and c-axis resistance, temperature-dependent Hall coefficient and low temperature, magnetoresistance in CaFe2As2 are presented. The T - P phase diagram, includ ing the observation of a complete superconducting transition in resistivity, delineated in earlier studies is found to be highly reproducible. The Hall resistivity and low temperature magnetoresistance are sensitive to different states/phases observed in CaFe2As2. Auxiliary measurements under uniaxial, c-axis, pressure are in general agreement with the liquid medium clamp cell results with some difference in critical pressure values and pressure derivatives. The data may be viewed as supporting the potential importance of non-hydrostatic components of pressure in inducing superconductivity in CaFe2As2.
We report on the crystal growth and characterization of ABi3 (A=Ba,Sr) superconductors. Single crystals of both compounds were grown by the self-flux technique. BaBi3 crystallized in a tetragonal structure with space group P4/mmm and SrBi3 in a cubic structure with space group Pm-3m. Superconductivity at Tc = 6.0 K for BaBi3 and Tc = 5.6 K for SrBi3 have been confirmed through dc magnetic susceptibility and electrical transport measurements. The dc magnetic susceptibility under hydrostatic pressure shows a positive pressure coefficient of dTc/dP = 1.22 K/GPa for BaBi3 and a negative pressure coefficient of dTc/dP = -0.48 K/GPa for SrBi3. The normal state electrical resistivity shows that both compounds are highly metallic in nature. The upper critical fields Hc2 evaluated by resistivity under magnetic fields $rho(T,H)$ are 22 kOe for BaBi3 and 2.9 kOe for SrBi3. A specific heat jump of $Delta Ce/gamma Tc = 1.05$ suggests weak coupling superconductivity in BaBi3, whereas $Delta Ce/gamma Tc = 2.08$ for SrBi3 is higher than the BCS theory value of 1.43, indicating a strong coupling superconductor.
128 - K. Mydeen , E. Lengyel , A. Jesche 2012
We carried out a combined P-substitution and hydrostatic pressure study on CeFeAs_1-xP_xO single crystals in order to investigate the peculiar relationship of the local moment magnetism of Ce, the ordering of itinerant Fe moments, and their connectio n with the occurrence of superconductivity. Our results evidence a close relationship between the weakening of Fe magnetism and the change from antiferromagnetic to ferromagnetic ordering of Ce moments at p*=1.95 GPa in CeFeAs_0.78P_0.22O. The absence of superconductivity in CeFeAs_0.78P_0.22O and the presence of a narrow and strongly pressure sensitive superconducting phase in CeFeAs_0.70P_0.30O and CeFeAs_0.65P_0.35O indicate the detrimental effect of the Ce magnetism on superconductivity in P-substituted CeFeAsO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا