ترغب بنشر مسار تعليمي؟ اضغط هنا

High-pressure effects on superconducting properties and crystal structure of Bi-based layered superconductor La2O2Bi3Ag0.6Sn0.4S6

73   0   0.0 ( 0 )
 نشر من قبل Yoshikazu Mizuguchi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effects of pressure on the superconducting properties of a Bi-based layered superconductor La2O2Bi3Ag0.6Sn0.4S6, which possesses a four-layer-type conducting layer, have been studied through the electrical resistance and magnetic susceptibility measurements. The crystal structure under pressure was examined using synchrotron X-ray diffraction at SPring-8. In the low-pressure regime, bulk superconductivity with a transition temperature Tc of ~ 4.5 K was induced by pressure, which was achieved by in-plane chemical pressure effect owing to the compression of the tetragonal structure. In the high-pressure regime above 6.4 GPa, a structural symmetry lowering was observed, and superconducting transitions with a Tc ~ 8 K were observed. Our results suggest the possible commonality on the factor essential for Tc in Bi-based superconductors with two-layer-type and four-layer-type conducting layers.



قيم البحث

اقرأ أيضاً

218 - S. G. Tan , L. J. Li , Y. Liu 2012
Polycrystalline sample of the new layered superconductor Bi4O4S3 is successfully synthesized by solid-state reaction method by using Bi, S and Bi2O3 powders with one step reaction. The superconducting transition temperature (Tconset=4.5 K), the zero resistance transition temperature (Tc0=4.07 K) and the diamagnetic transition temperature (4.02 K at H=10 Oe) were confirmed by electrical transport and magnetic measurements. Also, our results indicate a typical type II-superconductor behavior. In addition, a large thermoelectric effect was observed with a dimensionless thermoelectric figure of merit (ZT) of about 0.03 at 300K, indicating Bi4O4S3 can be a potential thermoelectric material.
Orthorhombic (space group: Pnma) Nb2P5 is a high-pressure phase that is quenchable to ambient pressure, which could viewed as the zigzag infinite P chain-inserted NbP2. We report herein the high-pressure crystal growth of Nb2P5 and the discovery of i ts superconducting transition at Tc ~ 2.6 K. The electrical resistivity, magnetization, and specific heat capacity measurements on the high-quality crystal unveiled a conventional type-II weakly coupled s-wave nature of the superconductivity, with the upper critical field Hc2(0) ~ 0.5 T, the electron-phonon coupling strength {lambda}ep ~ 0.5 - 0.8, and the Ginzburg-Landau parameter k{appa} ~ 100. The ab initio calculations on the electronic band structure unveiled nodal-line structures protected by different symmetries. The one caused by band inversion, for example, on the {Gamma}-X and U-R paths of the Brillouin zone, likely could bring nontrivial topology and hence possible nontrivial surface state on the surface. The surface states on the (100), (010) and (110) surfaces were also calculated and discussed. The discovery of the phosphorus-rich Nb2P5 superconductor would be instructive for the design of more metal phosphides superconductors which might host unconventional superconductivity or potential technical applications.
Pressure effects on a recently discovered BiS2-based superconductor Bi2(O,F)S2 (Tc = 5.1 K) were examined via two different methods; high pressure resistivity measurement and high pressure annealing. The effects of these two methods on the supercondu cting properties of Bi2(O,F)S2 were significantly different although in both methods hydrostatic pressure is applied to the sample by the cubic-anvil-type apparatus. In high pressure resistivity measurement, Tc linearly decreased at the rate of -1.2 K GPa-1. In contrast, the Tc of 5.1 K is maintained after high pressure annealing under 2 GPa and 470{deg}C of optimally doped sample despite significant change of lattice parameters. In addition, superconductivity was observed in fluorine-free Bi2OS2 after high pressure annealing. These results suggest that high pressure annealing would cause a unique effect on physical properties of layered compounds.
346 - S.Lee , T.Masui , H.Mori 2002
We discuss the important aspects of synthesis and crystal growth of MgB2 under high pressure (P) and temperature (T) in Mg-B-N system, including the optimisation of P-T conditions for reproducible crystal growth, the role of liquid phases in this pro cess, the temperature dependence of crystal size and the effect of growing instabilities on single crystals morphology. Extensive experiments have been carried out on single crystals with slightly different lattice constants and defects concentration, which revealed and possible effects of Mg-deficiency and lattice strain on the superconducting properties of MgB2 (Tc, Jc, residual resistivity ratio, anisotropy etc.).
We report the synthesis of a new quasi one-dimensional (1D) iron selenide. Ba9Fe3Se15 was synthesized at high temperature and high pressure of 5.5 GPa and systematically studied via structural, magnetic and transport measurements at ambient and at hi gh-pressures. Ba9Fe3Se15 crystallizes in a monoclinic structure and consists of face-sharing FeSe6 octahedral chains along the c axis. At ambient pressure it exhibits an insulating behavior with a band gap ~460 meV and undergoes a ferrimagnet-like phase transition at 14 K. Under high pressure, a complete metallization occurs at ~29 GPa, which is accompanied by a spin state crossover from high spin (HS) state to low spin (LS) state. The LS appears for pressures P >36 GPa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا