ﻻ يوجد ملخص باللغة العربية
Research on high-entropy-alloy (HEA) superconductors is a growing field in material science. In this study, we explored new HEA-type superconductors and discovered a CuAl2-type superconductor Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2 with a HEA-type transition metal site. A superconducting transition was observed at 8.0 K after electrical resistivity, magnetization, and specific heat measurements. The bulk characteristics of the superconductivity were confirmed through the specific heat measurements. The discovery of superconductivity in HEA-type Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2 will provide a novel pathway to explore new HEA-type superconductors and investigate the relationship between the mixing entropy and superconductivity of HEA-type compounds.
We report on the synthesis and superconductivity of high-entropy-alloy-type (HEA-type) compounds TrZr2 (Tr = Fe, Co, Ni, Rh, Ir), in which the Tr site satisfies the criterion of HEA. Polycrystalline samples of HEA-type TrZr2 with four different compo
A high-entropy-alloy-type (HEA-type) superconductor is new category of highly disordered superconductors. Therefore, finding brand-new superconducting characteristics in the HEA-type superconductors would open new avenue to investigate the relationsh
Effects of pressure on the electronic structure, electron-phonon interaction, and superconductivity of the high entropy alloy (TaNb)$_{0.67}$(HfZrTi)$_{0.33}$ are studied in the pressure range 0 - 100 GPa. The electronic structure is calculated using
High-entropy-alloy-type tellurides M-Te, which contain five different metals of M = Ag, In, Cd, Sn, Sb, Pb, and Bi, were synthesized using high pressure synthesis. Structural characterization revealed that all the obtained samples have a cubic NaCl-t
Here we report the synthesis and superconductivity of a novel ternary compound LaPd2Bi2. Shiny plate-like single crystals of LaPd2Bi2 were first synthesized by high-temperature solution method with PdBi flux. X-ray diffraction analysis indicates that