ترغب بنشر مسار تعليمي؟ اضغط هنا

Output Perturbation for Differentially Private Convex Optimization with Improved Population Loss Bounds, Runtimes and Applications to Private Adversarial Training

310   0   0.0 ( 0 )
 نشر من قبل Andrew Lowy
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Finding efficient, easily implementable differentially private (DP) algorithms that offer strong excess risk bounds is an important problem in modern machine learning. To date, most work has focused on private empirical risk minimization (ERM) or private population loss minimization. However, there are often other objectives--such as fairness, adversarial robustness, or sensitivity to outliers--besides average performance that are not captured in the classical ERM setup. To this end, we study a completely general family of convex, Lipschitz loss functions and establish the first known DP excess risk and runtime bounds for optimizing this broad class. We provide similar bounds under additional assumptions of smoothness and/or strong convexity. We also address private stochastic convex optimization (SCO). While $(epsilon, delta)$-DP ($delta > 0$) has been the focus of much recent work in private SCO, proving tight population loss bounds and runtime bounds for $(epsilon, 0)$-DP remains a challenging open problem. We provide the tightest known $(epsilon, 0)$-DP population loss bounds and fastest runtimes under the presence of (or lack of) smoothness and strong convexity. Our methods extend to the $delta > 0$ setting, where we offer the unique benefit of ensuring differential privacy for arbitrary $epsilon > 0$ by incorporating a new form of Gaussian noise. Finally, we apply our theory to two learning frameworks: tilted ERM and adversarial learning. In particular, our theory quantifies tradeoffs between adversarial robustness, privacy, and runtime. Our results are achieved using perhaps the simplest DP algorithm: output perturbation. Although this method is not novel conceptually, our novel implementation scheme and analysis show that the power of this method to achieve strong privacy, utility, and runtime guarantees has not been fully appreciated in prior works.

قيم البحث

اقرأ أيضاً

We study stochastic convex optimization with heavy-tailed data under the constraint of differential privacy. Most prior work on this problem is restricted to the case where the loss function is Lipschitz. Instead, as introduced by Wang, Xiao, Devadas , and Xu, we study general convex loss functions with the assumption that the distribution of gradients has bounded $k$-th moments. We provide improved upper bounds on the excess population risk under approximate differential privacy of $tilde{O}left(sqrt{frac{d}{n}}+left(frac{d}{epsilon n}right)^{frac{k-1}{k}}right)$ and $tilde{O}left(frac{d}{n}+left(frac{d}{epsilon n}right)^{frac{2k-2}{k}}right)$ for convex and strongly convex loss functions, respectively. We also prove nearly-matching lower bounds under the constraint of pure differential privacy, giving strong evidence that our bounds are tight.
Deep Neural Networks, despite their great success in diverse domains, are provably sensitive to small perturbations on correctly classified examples and lead to erroneous predictions. Recently, it was proposed that this behavior can be combatted by o ptimizing the worst case loss function over all possible substitutions of training examples. However, this can be prone to weighing unlikely substitutions higher, limiting the accuracy gain. In this paper, we study adversarial robustness through randomized perturbations, which has two immediate advantages: (1) by ensuring that substitution likelihood is weighted by the proximity to the original word, we circumvent optimizing the worst case guarantees and achieve performance gains; and (2) the calibrated randomness imparts differentially-private model training, which additionally improves robustness against adversarial attacks on the model outputs. Our approach uses a novel density-based mechanism based on truncated Gumbel noise, which ensures training on substitutions of both rare and dense words in the vocabulary while maintaining semantic similarity for model robustness.
This paper studies the relationship between generalization and privacy preservation in iterative learning algorithms by two sequential steps. We first establish an alignment between generalization and privacy preservation for any learning algorithm. We prove that $(varepsilon, delta)$-differential privacy implies an on-average generalization bound for multi-database learning algorithms which further leads to a high-probability bound for any learning algorithm. This high-probability bound also implies a PAC-learnable guarantee for differentially private learning algorithms. We then investigate how the iterative nature shared by most learning algorithms influence privacy preservation and further generalization. Three composition theorems are proposed to approximate the differential privacy of any iterative algorithm through the differential privacy of its every iteration. By integrating the above two steps, we eventually deliver generalization bounds for iterative learning algorithms, which suggest one can simultaneously enhance privacy preservation and generalization. Our results are strictly tighter than the existing works. Particularly, our generalization bounds do not rely on the model size which is prohibitively large in deep learning. This sheds light to understanding the generalizability of deep learning. These results apply to a wide spectrum of learning algorithms. In this paper, we apply them to stochastic gradient Langevin dynamics and agnostic federated learning as examples.
Differentially private stochastic gradient descent (DPSGD) is a variation of stochastic gradient descent based on the Differential Privacy (DP) paradigm which can mitigate privacy threats arising from the presence of sensitive information in training data. One major drawback of training deep neural networks with DPSGD is a reduction in the models accuracy. In this paper, we propose an alternative method for preserving data privacy based on introducing noise through learnable probability distributions, which leads to a significant improvement in the utility of the resulting private models. We also demonstrate that normalization layers have a large beneficial impact on the performance of deep neural networks with noisy parameters. In particular, we show that contrary to general belief, a large amount of random noise can be added to the weights of neural networks without harming the performance, once the networks are augmented with normalization layers. We hypothesize that this robustness is a consequence of the scale invariance property of normalization operators. Building on these observations, we propose a new algorithmic technique for training deep neural networks under very low privacy budgets by sampling weights from Gaussian distributions and utilizing batch or layer normalization techniques to prevent performance degradation. Our method outperforms previous approaches, including DPSGD, by a substantial margin on a comprehensive set of experiments on Computer Vision and Natural Language Processing tasks. In particular, we obtain a 20 percent accuracy improvement over DPSGD on the MNIST and CIFAR10 datasets with DP-privacy budgets of $varepsilon = 0.05$ and $varepsilon = 2.0$, respectively. Our code is available online: https://github.com/uds-lsv/SIDP.
In shuffle privacy, each user sends a collection of randomized messages to a trusted shuffler, the shuffler randomly permutes these messages, and the resulting shuffled collection of messages must satisfy differential privacy. Prior work in this mode l has largely focused on protocols that use a single round of communication to compute algorithmic primitives like means, histograms, and counts. In this work, we present interactive shuffle protocols for stochastic convex optimization. Our optimization protocols rely on a new noninteractive protocol for summing vectors of bounded $ell_2$ norm. By combining this sum subroutine with techniques including mini-batch stochastic gradient descent, accelerated gradient descent, and Nesterovs smoothing method, we obtain loss guarantees for a variety of convex loss functions that significantly improve on those of the local model and sometimes match those of the central model.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا