ترغب بنشر مسار تعليمي؟ اضغط هنا

Private Non-smooth Empirical Risk Minimization and Stochastic Convex Optimization in Subquadratic Steps

164   0   0.0 ( 0 )
 نشر من قبل Daogao Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the differentially private Empirical Risk Minimization (ERM) and Stochastic Convex Optimization (SCO) problems for non-smooth convex functions. We get a (nearly) optimal bound on the excess empirical risk and excess population loss with subquadratic gradient complexity. More precisely, our differentially private algorithm requires $O(frac{N^{3/2}}{d^{1/8}}+ frac{N^2}{d})$ gradient queries for optimal excess empirical risk, which is achieved with the help of subsampling and smoothing the function via convolution. This is the first subquadratic algorithm for the non-smooth case when $d$ is super constant. As a direct application, using the iterative localization approach of Feldman et al. cite{fkt20}, we achieve the optimal excess population loss for stochastic convex optimization problem, with $O(min{N^{5/4}d^{1/8},frac{ N^{3/2}}{d^{1/8}}})$ gradient queries. Our work makes progress towards resolving a question raised by Bassily et al. cite{bfgt20}, giving first algorithms for private ERM and SCO with subquadratic steps. We note that independently Asi et al. cite{afkt21} gave other algorithms for private ERM and SCO with subquadratic steps.



قيم البحث

اقرأ أيضاً

In shuffle privacy, each user sends a collection of randomized messages to a trusted shuffler, the shuffler randomly permutes these messages, and the resulting shuffled collection of messages must satisfy differential privacy. Prior work in this mode l has largely focused on protocols that use a single round of communication to compute algorithmic primitives like means, histograms, and counts. In this work, we present interactive shuffle protocols for stochastic convex optimization. Our optimization protocols rely on a new noninteractive protocol for summing vectors of bounded $ell_2$ norm. By combining this sum subroutine with techniques including mini-batch stochastic gradient descent, accelerated gradient descent, and Nesterovs smoothing method, we obtain loss guarantees for a variety of convex loss functions that significantly improve on those of the local model and sometimes match those of the central model.
We study differentially private (DP) algorithms for stochastic convex optimization (SCO). In this problem the goal is to approximately minimize the population loss given i.i.d. samples from a distribution over convex and Lipschitz loss functions. A l ong line of existing work on private convex optimization focuses on the empirical loss and derives asymptotically tight bounds on the excess empirical loss. However a significant gap exists in the known bounds for the population loss. We show that, up to logarithmic factors, the optimal excess population loss for DP algorithms is equal to the larger of the optimal non-private excess population loss, and the optimal excess empirical loss of DP algorithms. This implies that, contrary to intuition based on private ERM, private SCO has asymptotically the same rate of $1/sqrt{n}$ as non-private SCO in the parameter regime most common in practice. The best previous result in this setting gives rate of $1/n^{1/4}$. Our approach builds on existing differentially private algorithms and relies on the analysis of algorithmic stability to ensure generalization.
We study stochastic convex optimization with heavy-tailed data under the constraint of differential privacy. Most prior work on this problem is restricted to the case where the loss function is Lipschitz. Instead, as introduced by Wang, Xiao, Devadas , and Xu, we study general convex loss functions with the assumption that the distribution of gradients has bounded $k$-th moments. We provide improved upper bounds on the excess population risk under approximate differential privacy of $tilde{O}left(sqrt{frac{d}{n}}+left(frac{d}{epsilon n}right)^{frac{k-1}{k}}right)$ and $tilde{O}left(frac{d}{n}+left(frac{d}{epsilon n}right)^{frac{2k-2}{k}}right)$ for convex and strongly convex loss functions, respectively. We also prove nearly-matching lower bounds under the constraint of pure differential privacy, giving strong evidence that our bounds are tight.
Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of c lassifiers learned via (regularized) empirical risk minimization (ERM). These algorithms are private under the $epsilon$-differential privacy definition due to Dwork et al. (2006). First we apply the output perturbation ideas of Dwork et al. (2006), to ERM classification. Then we propose a new method, objective perturbation, for privacy-preserving machine learning algorithm design. This method entails perturbing the objective function before optimizing over classifiers. If the loss and regularizer satisfy certain convexity and differentiability criteria, we prove theoretical results showing that our algorithms preserve privacy, and provide generalization bounds for linear and nonlinear kernels. We further present a privacy-preserving technique for tuning the parameters in general machine learning algorithms, thereby providing end-to-end privacy guarantees for the training process. We apply these results to produce privacy-preserving analogues of regularized logistic regression and support vector machines. We obtain encouraging results from evaluating their performance on real demographic and benchmark data sets. Our results show that both theoretically and empirically, objective perturbation is superior to the previous state-of-the-art, output perturbation, in managing the inherent tradeoff between privacy and learning performance.
Privacy concern has been increasingly important in many machine learning (ML) problems. We study empirical risk minimization (ERM) problems under secure multi-party computation (MPC) frameworks. Main technical tools for MPC have been developed based on cryptography. One of limitations in current cryptographically private ML is that it is computationally intractable to evaluate non-linear functions such as logarithmic functions or exponential functions. Therefore, for a class of ERM problems such as logistic regression in which non-linear function evaluations are required, one can only obtain approximate solutions. In this paper, we introduce a novel cryptographically private tool called secure approximation guarantee (SAG) method. The key property of SAG method is that, given an arbitrary approximate solution, it can provide a non-probabilistic assumption-free bound on the approximation quality under cryptographically secure computation framework. We demonstrate the benefit of the SAG method by applying it to several problems including a practical privacy-preserving data analysis task on genomic and clinical information.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا