ﻻ يوجد ملخص باللغة العربية
The discovery of nonmagnetic Weyl semimetals (WSMs) in TaAs compounds has triggered lots of efforts in finding its magnetic counterpart. While the direct observation of the Weyl nodes and Fermi arcs in a magnetic candidate through angle-resolved photoemission spectroscopy is hindered by the complex magnetic domains. The transport features of magnetic WSMs, including negative magnetoresistivity and anomalous Hall conductivity, are not conclusive since these are sensitive to extrinsic factors like defects and disorders in lattice or magnetic ordering. Here, we systematically study the temperature-dependent optical spectra of ferromagnetic Co$_3$Sn$_2$S$_2$ experimentally and simulated by first-principles calculations. The many-body correlation effect due to Co $3d$ electrons leads to the renormalization of bands by a factor about 1.33, which is moderate and the description within density functional theory is suitable. As the temperature drops down, the magnetic phase transition happens and the magnetization drives the band shift through exchange splitting. The optical spectra can well detect these changes, including the transitions sensitive and insensitive to the magnetization, and those from the bands around the Weyl nodes. The results strongly support that Co$_3$Sn$_2$S$_2$ is a magnetic WSM and the Weyl nodes can be tuned by magnetization with temperature change.
A search for the single material system that simultaneously exhibits topological phase and intrinsic superconductivity has been largely limited, although such a system is far more favorable especially for the quantum device applications. Except artif
Magnetic topological materials have recently drawn significant importance and interest, due to their topologically nontrivial electronic structure within spontaneous magnetic moments and band inversion. Based on first-principles calculations, we prop
Chemical doping of topological materials may provide a possible route for realizing topological superconductivity. However, all such cases known so far are based on chalcogenides. Here we report the discovery of superconductivity induced by Re doping
Recently monolayer jacutingaite (Pt2HgSe3), a naturally occurring exfoliable mineral, discovered in Brazil in 2008, has been theoretically predicted as a candidate quantum spin Hall system with a 0.5 eV band gap, while the bulk form is one of only a
Layered transition metal dichalcogenide WTe$_2$ has recently attracted significant attention due to the discovery of an extremely large magnetoresistance, a predicted type-II Weyl semimetallic state, and the pressure-induced superconducting state. By