ترغب بنشر مسار تعليمي؟ اضغط هنا

Ferromagnetic Type-II Weyl Semimetal in Pyrite Chromium Dioxide

102   0   0.0 ( 0 )
 نشر من قبل Hu Xu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic topological materials have recently drawn significant importance and interest, due to their topologically nontrivial electronic structure within spontaneous magnetic moments and band inversion. Based on first-principles calculations, we propose that chromium dioxide, in its ferromagnetic pyrite structure, can realize one pair of type-II Weyl points between the $N$th and $(N+1)$th bands, where $N$ is the total number of valence electrons per unit cell. Other Weyl points between the $(N-1)$th and $N$th bands also appear close to the Fermi level due to the complex topological electronic band structure. The symmetry analysis elucidates that the Weyl points arise from a triply-degenerate point splitting due to the mirror reflection symmetry broken in the presence of spin-orbital coupling, which is equivalent to an applied magnetic field along the direction of magnetization. The Weyl points located on the magnetic axis are protected by the three-fold rotational symmetry. The corresponding Fermi arcs projected on both (001) and (110) surfaces are calculated as well and observed clearly. This finding opens a wide range of possible experimental realizations of type-II Weyl fermions in a system with time-reversal breaking.

قيم البحث

اقرأ أيضاً

346 - M.-Y. Yao , N. Xu , Q. Wu 2019
Distinct to type-I Weyl semimetals (WSMs) that host quasiparticles described by the Weyl equation, the energy dispersion of quasiparticles in type-II WSMs violates Lorentz invariance and the Weyl cones in the momentum space are tilted. Since it was p roposed that type-II Weyl fermions could emerge from (W,Mo)Te2 and (W,Mo)P2 families of materials, a large numbers of experiments have been dedicated to unveil the possible manifestation of type-II WSM, e.g. the surface-state Fermi arcs. However, the interpretations of the experimental results are very controversial. Here, using angle-resolved photoemission spectroscopy supported by the first-principles calculations, we probe the tilted Weyl cone bands in the bulk electronic structure of WP2 directly, which are at the origin of Fermi arcs at the surfaces and transport properties related to the chiral anomaly in type-II WSMs. Our results ascertain that due to the spin-orbit coupling the Weyl nodes originate from the splitting of 4-fold degenerate band-crossing points with Chern numbers C = $pm$2 induced by the crystal symmetries of WP2, which is unique among all the discovered WSMs. Our finding also provides a guiding line to observe the chiral anomaly which could manifest in novel transport properties.
Quantum topological materials, exemplified by topological insulators, three-dimensional Dirac semimetals and Weyl semimetals, have attracted much attention recently because of their unique electronic structure and physical properties. Very lately it is proposed that the three-dimensional Weyl semimetals can be further classified into two types. In the type I Weyl semimetals, a topologically protected linear crossing of two bands, i.e., a Weyl point, occurs at the Fermi level resulting in a point-like Fermi surface. In the type II Weyl semimetals, the Weyl point emerges from a contact of an electron and a hole pocket at the boundary resulting in a highly tilted Weyl cone. In type II Weyl semimetals, the Lorentz invariance is violated and a fundamentally new kind of Weyl Fermions is produced that leads to new physical properties. WTe2 is interesting because it exhibits anomalously large magnetoresistance. It has ignited a new excitement because it is proposed to be the first candidate of realizing type II Weyl Fermions. Here we report our angle-resolved photoemission (ARPES) evidence on identifying the type II Weyl Fermion state in WTe2. By utilizing our latest generation laser-based ARPES system with superior energy and momentum resolutions, we have revealed a full picture on the electronic structure of WTe2. Clear surface state has been identified and its connection with the bulk electronic states in the momentum and energy space shows a good agreement with the calculated band structures with the type II Weyl states. Our results provide spectroscopic evidence on the observation of type II Weyl states in WTe2. It has laid a foundation for further exploration of novel phenomena and physical properties in the type II Weyl semimetals.
Photo sensing and energy harvesting based on exotic properties of quantum materials and new operation principles have great potentials to break the fundamental performance limit of conventional photodetectors and solar cells. As topological nontrivia l materials, Weyl semimetals have demonstrated novel optoelectronic properties that promise potential applications in photo detection and energy harvesting arising from their gapless linear dispersion near Weyl nodes and Berry field enhanced nonlinear optical effect at the vicinity of Weyl nodes. In this work, we demonstrate robust photocurrent generation from charge separation of photoexctied electron-hole pairs at the edge of Td-WTe2, a type-II Weyl semimetal, due to crystalline-symmetry breaking along certain crystal fracture directions and possibly enhanced by robust fermi-arc type surface states. Using scanning photocurrent microscopy (SPCM) measurements, we further demonstrate that the edge current response is robust over a wide excitation photon energy. We find that this robust feature is highly generic, and shall arise universally in a wide class of quantum materials with similar crystal symmetries. In addition, possible connections between these edge photocurrents and topological properties of Weyl semimetals are explored. The robust and generic edge current response demonstrated in this work provides a new type of charge separation mechanism for photosensing and energy harvesting over broad wavelength range.
We report a comprehensive neutron scattering study on the spin excitations in the magnetic Weyl semimetal Co$_3$Sn$_2$S$_2$ with quasi-two-dimensional structure. Both in-plane and out-of-plane dispersions of the spin waves are revealed in the ferroma gnetic state, similarly dispersive but damped spin excitations persist into the paramagnetic state. The effective exchange interactions have been estimated by a semi-classical Heisenberg model to consistently reproduce the experimental $T_C$ and spin stiffness. However, a full spin wave gap below $E_g=2.3$ meV is observed at $T=4$ K, much larger than the estimated magnetic anisotropy energy ($sim0.6$ meV), while its temperature dependence indicates a significant contribution from the Weyl fermions. These results suggest that Co$_3$Sn$_2$S$_2$ is a three-dimensional correlated system with large spin stiffness, and the low-energy spin dynamics could interplay with the topological electron states.
We present details of materials synthesis, crystal structure, and anisotropic magnetic properties of single crystals of CeAlGe, a proposed type-II Weyl semimetal. Single-crystal x-ray diffraction confirms that CeAlGe forms in noncentrosymmetric I4$_1 $md space group, in line with predictions of non-trivial topology. Magnetization, specific heat and electrical transport measurements were used to confirm antiferromagnetic order below 5 K, with an estimated magnon excitation gap of $Delta$ = 9.11 K from heat capacity and hole-like carrier density of 1.44 $times$ 10$^{20}$ cm$^{-3}$ from Hall effect measurements. The easy magnetic axis is along the [100] crystallographic direction, indicating that the moment lies in the tetragonal $it{ab}$-plane below 7 K. A spin-flop transition to less than 1 $mu_B$/Ce is observed to occur below 30 kOe at 1.8 K in the $M(H)$ ($bf{H}|bf{a}$) data. Small magnetic fields of 3 kOe and 30 kOe are sufficient to suppress magnetic order when applied along the $it{a}$- and $it{c}$-axes, respectively, resulting in a complex $it{T-H}$ phase diagram for $bf{H}|bf{a}$ and a simpler one for $bf{H}|bf{c}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا