ﻻ يوجد ملخص باللغة العربية
A search for the single material system that simultaneously exhibits topological phase and intrinsic superconductivity has been largely limited, although such a system is far more favorable especially for the quantum device applications. Except artificially engineered topological superconductivity in heterostructure systems, another alternative is to have superconductivity arising from the topological materials by pressure or other clean technology. Here, based on first-principles calculations, we first show that quasi-one-dimensional compound (NbSe4)2I represents a rare example of a chiral Weyl semimetal in which the set of symmetry-related Weyl points (WPs) exhibit the same chiral charge at a certain energy. The net chiral charge (NCC) of the below Fermi level EF (or a certain energy) can be tuned by pressure. In addition, a partial disorder induced by pressure accompanied with superconductivity emerges. Although amorphization of the iodine sub-lattice under high pressure, the one-dimensional NbSe4 chains in (NbSe4)2I remain intact and provide a superconducting channel in one dimension. Our combined theoretical and experimental research provide critical insight into a new phase of the one-dimensional system, in which distinctive phase transitions and correlated topological states emerge upon compression.
The recently discovered Dirac and Weyl semimetals are new members of topological materials. Starting from them, topological superconductivity may be achieved, e.g. by carrier doping or applying pressure. Here we report high-pressure resistance and X-
Recently monolayer jacutingaite (Pt2HgSe3), a naturally occurring exfoliable mineral, discovered in Brazil in 2008, has been theoretically predicted as a candidate quantum spin Hall system with a 0.5 eV band gap, while the bulk form is one of only a
We report systematical studies of a new quasi-one-dimensional (1D) compound Ba3TiTe5 and the high-pressure induced superconductivity therein. Ba3TiTe5 was synthesized at high pressure and high temperature. It crystallizes into a hexagonal structure (
Topological nodal-line semimetals (TNLSMs) are materials whose conduction and valence bands cross each other, meeting a topologically-protected closed loop rather than discrete points in the Brillouin zone (BZ). The anticipated properties for TNLSMs
By replacing the alkali element in the newly discovered K2Mo3As3 superconductor, we successfully synthesized ternary molybdenum pnictides Rb2Mo3As3 and Cs2Mo3As3 through solid state reaction method. Powder X-ray diffraction analysis reveals the same