ﻻ يوجد ملخص باللغة العربية
Chemical doping of topological materials may provide a possible route for realizing topological superconductivity. However, all such cases known so far are based on chalcogenides. Here we report the discovery of superconductivity induced by Re doping in the topological semimetal Mo$_{5}$Si$_{3}$ with a tetragonal structure. Partial substitution of Re for Mo in Mo$_{5-x}$Re$_{x}$Si$_{3}$ results in an anisotropic shrinkage of the unit cell up to the solubility limit of approximately $x$ = 2. Over a wide doping range (0.5 $leq$ $x$ $leq$ 2), these silicides are found to be weakly coupled superconductors with a fully isotropic gap. $T_{rm c}$ increases monotonically with $x$ from 1.67 K to 5.78 K, the latter of which is the highest among superconductors of the same structural type. This trend in $T_{rm c}$ correlates well with the variation of the number of valence electrons, and is mainly ascribed to the enhancement of electron-phonon coupling. In addition, band structure calculations reveal that superconducting Mo$_{5-x}$Re$_{x}$Si$_{3}$ exhibits nontrivial band topology characterized by $Z_{2}$ invariants (1;000) or (1;111) depending on the Re doping level. Our results suggest that transition metal silicides are a fertile ground for the exploration of candidate topological superconductors.
Recently monolayer jacutingaite (Pt2HgSe3), a naturally occurring exfoliable mineral, discovered in Brazil in 2008, has been theoretically predicted as a candidate quantum spin Hall system with a 0.5 eV band gap, while the bulk form is one of only a
Topological nodal-line semimetals (TNLSMs) are materials whose conduction and valence bands cross each other, meeting a topologically-protected closed loop rather than discrete points in the Brillouin zone (BZ). The anticipated properties for TNLSMs
We report the observation of local superconductivity induced at the point contact formed between a normal metal tip and WC -- a triple point topological semimetal with super hardness. Remarkably, the maximum critical temperature is up to near 12 K bu
Interfaces between materials with different electronic ground states have become powerful platforms for creating and controlling novel quantum states of matter, in which inversion symmetry breaking and other effects at the interface may introduce add
Topological superconductivity with Majorana bound states, which are critical to implement nonabelian quantum computation, may be realized in three-dimensional semimetals with nontrivial topological feature, when superconducting transition occurs in t