ﻻ يوجد ملخص باللغة العربية
We study the problem of robustly estimating the posterior distribution for the setting where observed data can be contaminated with potentially adversarial outliers. We propose Rob-ULA, a robust variant of the Unadjusted Langevin Algorithm (ULA), and provide a finite-sample analysis of its sampling distribution. In particular, we show that after $T= tilde{mathcal{O}}(d/varepsilon_{textsf{acc}})$ iterations, we can sample from $p_T$ such that $text{dist}(p_T, p^*) leq varepsilon_{textsf{acc}} + tilde{mathcal{O}}(epsilon)$, where $epsilon$ is the fraction of corruptions. We corroborate our theoretical analysis with experiments on both synthetic and real-world data sets for mean estimation, regression and binary classification.
We introduce a fully stochastic gradient based approach to Bayesian optimal experimental design (BOED). Our approach utilizes variational lower bounds on the expected information gain (EIG) of an experiment that can be simultaneously optimized with r
Bayesian optimal experimental design (BOED) is a principled framework for making efficient use of limited experimental resources. Unfortunately, its applicability is hampered by the difficulty of obtaining accurate estimates of the expected informati
Bayesian coresets have emerged as a promising approach for implementing scalable Bayesian inference. The Bayesian coreset problem involves selecting a (weighted) subset of the data samples, such that the posterior inference using the selected subset
Evaluation of Bayesian deep learning (BDL) methods is challenging. We often seek to evaluate the methods robustness and scalability, assessing whether new tools give `better uncertainty estimates than old ones. These evaluations are paramount for pra
Bayesian optimisation is a sample-efficient search methodology that holds great promise for accelerating drug and materials discovery programs. A frequently-overlooked modelling consideration in Bayesian optimisation strategies however, is the repres