ترغب بنشر مسار تعليمي؟ اضغط هنا

Achieving Robustness to Aleatoric Uncertainty with Heteroscedastic Bayesian Optimisation

83   0   0.0 ( 0 )
 نشر من قبل Ryan-Rhys Griffiths
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Bayesian optimisation is a sample-efficient search methodology that holds great promise for accelerating drug and materials discovery programs. A frequently-overlooked modelling consideration in Bayesian optimisation strategies however, is the representation of heteroscedastic aleatoric uncertainty. In many practical applications it is desirable to identify inputs with low aleatoric noise, an example of which might be a material composition which consistently displays robust properties in response to a noisy fabrication process. In this paper, we propose a heteroscedastic Bayesian optimisation scheme capable of representing and minimising aleatoric noise across the input space. Our scheme employs a heteroscedastic Gaussian process (GP) surrogate model in conjunction with two straightforward adaptations of existing acquisition functions. First, we extend the augmented expected improvement (AEI) heuristic to the heteroscedastic setting and second, we introduce the aleatoric noise-penalised expected improvement (ANPEI) heuristic. Both methodologies are capable of penalising aleatoric noise in the suggestions and yield improved performance relative to homoscedastic Bayesian optimisation and random sampling on toy problems as well as on two real-world scientific datasets. Code is available at: url{https://github.com/Ryan-Rhys/Heteroscedastic-BO}



قيم البحث

اقرأ أيضاً

We study the problem of robustly estimating the posterior distribution for the setting where observed data can be contaminated with potentially adversarial outliers. We propose Rob-ULA, a robust variant of the Unadjusted Langevin Algorithm (ULA), and provide a finite-sample analysis of its sampling distribution. In particular, we show that after $T= tilde{mathcal{O}}(d/varepsilon_{textsf{acc}})$ iterations, we can sample from $p_T$ such that $text{dist}(p_T, p^*) leq varepsilon_{textsf{acc}} + tilde{mathcal{O}}(epsilon)$, where $epsilon$ is the fraction of corruptions. We corroborate our theoretical analysis with experiments on both synthetic and real-world data sets for mean estimation, regression and binary classification.
Efficient optimisation of black-box problems that comprise both continuous and categorical inputs is important, yet poses significant challenges. We propose a new approach, Continuous and Categorical Bayesian Optimisation (CoCaBO), which combines the strengths of multi-armed bandits and Bayesian optimisation to select values for both categorical and continuous inputs. We model this mixed-type space using a Gaussian Process kernel, designed to allow sharing of information across multiple categorical variables, each with multiple possible values; this allows CoCaBO to leverage all available data efficiently. We extend our method to the batch setting and propose an efficient selection procedure that dynamically balances exploration and exploitation whilst encouraging batch diversity. We demonstrate empirically that our method outperforms existing approaches on both synthetic and real-world optimisation tasks with continuous and categorical inputs.
We introduce a novel framework for the estimation of the posterior distribution over the weights of a neural network, based on a new probabilistic interpretation of adaptive optimisation algorithms such as AdaGrad and Adam. We demonstrate the effecti veness of our Bayesian Adam method, Badam, by experimentally showing that the learnt uncertainties correctly relate to the weights predictive capabilities by weight pruning. We also demonstrate the quality of the derived uncertainty measures by comparing the performance of Badam to standard methods in a Thompson sampling setting for multi-armed bandits, where good uncertainty measures are required for an agent to balance exploration and exploitation.
Batch Bayesian optimisation (BO) has been successfully applied to hyperparameter tuning using parallel computing, but it is wasteful of resources: workers that complete jobs ahead of others are left idle. We address this problem by developing an appr oach, Penalising Locally for Asynchronous Bayesian Optimisation on $k$ workers (PLAyBOOK), for asynchronous parallel BO. We demonstrate empirically the efficacy of PLAyBOOK and its variants on synthetic tasks and a real-world problem. We undertake a comparison between synchronous and asynchronous BO, and show that asynchronous BO often outperforms synchronous batch BO in both wall-clock time and number of function evaluations.
220 - Ali Siahkoohi , Gabrio Rizzuti , 2020
Uncertainty quantification is essential when dealing with ill-conditioned inverse problems due to the inherent nonuniqueness of the solution. Bayesian approaches allow us to determine how likely an estimation of the unknown parameters is via formulat ing the posterior distribution. Unfortunately, it is often not possible to formulate a prior distribution that precisely encodes our prior knowledge about the unknown. Furthermore, adherence to handcrafted priors may greatly bias the outcome of the Bayesian analysis. To address this issue, we propose to use the functional form of a randomly initialized convolutional neural network as an implicit structured prior, which is shown to promote natural images and excludes images with unnatural noise. In order to incorporate the model uncertainty into the final estimate, we sample the posterior distribution using stochastic gradient Langevin dynamics and perform Bayesian model averaging on the obtained samples. Our synthetic numerical experiment verifies that deep priors combined with Bayesian model averaging are able to partially circumvent imaging artifacts and reduce the risk of overfitting in the presence of extreme noise. Finally, we present pointwise variance of the estimates as a measure of uncertainty, which coincides with regions that are more difficult to image.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا