ترغب بنشر مسار تعليمي؟ اضغط هنا

Variational Bayesian Optimal Experimental Design

80   0   0.0 ( 0 )
 نشر من قبل Adam Foster
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Bayesian optimal experimental design (BOED) is a principled framework for making efficient use of limited experimental resources. Unfortunately, its applicability is hampered by the difficulty of obtaining accurate estimates of the expected information gain (EIG) of an experiment. To address this, we introduce several classes of fast EIG estimators by building on ideas from amortized variational inference. We show theoretically and empirically that these estimators can provide significant gains in speed and accuracy over previous approaches. We further demonstrate the practicality of our approach on a number of end-to-end experiments.

قيم البحث

اقرأ أيضاً

We introduce a fully stochastic gradient based approach to Bayesian optimal experimental design (BOED). Our approach utilizes variational lower bounds on the expected information gain (EIG) of an experiment that can be simultaneously optimized with r espect to both the variational and design parameters. This allows the design process to be carried out through a single unified stochastic gradient ascent procedure, in contrast to existing approaches that typically construct a pointwise EIG estimator, before passing this estimator to a separate optimizer. We provide a number of different variational objectives including the novel adaptive contrastive estimation (ACE) bound. Finally, we show that our gradient-based approaches are able to provide effective design optimization in substantially higher dimensional settings than existing approaches.
We introduce Deep Adaptive Design (DAD), a method for amortizing the cost of adaptive Bayesian experimental design that allows experiments to be run in real-time. Traditional sequential Bayesian optimal experimental design approaches require substant ial computation at each stage of the experiment. This makes them unsuitable for most real-world applications, where decisions must typically be made quickly. DAD addresses this restriction by learning an amortized design network upfront and then using this to rapidly run (multiple) adaptive experiments at deployment time. This network represents a design policy which takes as input the data from previous steps, and outputs the next design using a single forward pass; these design decisions can be made in milliseconds during the live experiment. To train the network, we introduce contrastive information bounds that are suitable objectives for the sequential setting, and propose a customized network architecture that exploits key symmetries. We demonstrate that DAD successfully amortizes the process of experimental design, outperforming alternative strategies on a number of problems.
Modern applications of Bayesian inference involve models that are sufficiently complex that the corresponding posterior distributions are intractable and must be approximated. The most common approximation is based on Markov chain Monte Carlo, but th ese can be expensive when the data set is large and/or the model is complex, so more efficient variational approximations have recently received considerable attention. The traditional variational methods, that seek to minimize the Kullback--Leibler divergence between the posterior and a relatively simple parametric family, provide accurate and efficient estimation of the posterior mean, but often does not capture other moments, and have limitations in terms of the models to which they can be applied. Here we propose the construction of variational approximations based on minimizing the Fisher divergence, and develop an efficient computational algorithm that can be applied to a wide range of models without conjugacy or potentially unrealistic mean-field assumptions. We demonstrate the superior performance of the proposed method for the benchmark case of logistic regression.
177 - Jean Daunizeau 2019
This note is concerned with an accurate and computationally efficient variational bayesian treatment of mixed-effects modelling. We focus on group studies, i.e. empirical studies that report multiple measurements acquired in multiple subjects. When a pproached from a bayesian perspective, such mixed-effects models typically rely upon a hierarchical generative model of the data, whereby both within- and between-subject effects contribute to the overall observed variance. The ensuing VB scheme can be used to assess statistical significance at the group level and/or to capture inter-individual differences. Alternatively, it can be seen as an adaptive regularization procedure, which iteratively learns the corresponding within-subject priors from estimates of the group distribution of effects of interest (cf. so-called empirical bayes approaches). We outline the mathematical derivation of the ensuing VB scheme, whose open-source implementation is available as part the VBA toolbox.
We develop variational Laplace for Bayesian neural networks (BNNs) which exploits a local approximation of the curvature of the likelihood to estimate the ELBO without the need for stochastic sampling of the neural-network weights. The Variational La place objective is simple to evaluate, as it is (in essence) the log-likelihood, plus weight-decay, plus a squared-gradient regularizer. Variational Laplace gave better test performance and expected calibration errors than maximum a-posteriori inference and standard sampling-based variational inference, despite using the same variational approximate posterior. Finally, we emphasise care needed in benchmarking standard VI as there is a risk of stopping before the variance parameters have converged. We show that early-stopping can be avoided by increasing the learning rate for the variance parameters.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا