ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Coresets: Revisiting the Nonconvex Optimization Perspective

120   0   0.0 ( 0 )
 نشر من قبل Jacky Zhang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Bayesian coresets have emerged as a promising approach for implementing scalable Bayesian inference. The Bayesian coreset problem involves selecting a (weighted) subset of the data samples, such that the posterior inference using the selected subset closely approximates the posterior inference using the full dataset. This manuscript revisits Bayesian coresets through the lens of sparsity constrained optimization. Leveraging recent advances in accelerated optimization methods, we propose and analyze a novel algorithm for coreset selection. We provide explicit convergence rate guarantees and present an empirical evaluation on a variety of benchmark datasets to highlight our proposed algorithms superior performance compared to state-of-the-art on speed and accuracy.

قيم البحث

اقرأ أيضاً

Existing nonconvex statistical optimization theory and methods crucially rely on the correct specification of the underlying true statistical models. To address this issue, we take a first step towards taming model misspecification by studying the hi gh-dimensional sparse phase retrieval problem with misspecified link functions. In particular, we propose a simple variant of the thresholded Wirtinger flow algorithm that, given a proper initialization, linearly converges to an estimator with optimal statistical accuracy for a broad family of unknown link functions. We further provide extensive numerical experiments to support our theoretical findings.
We propose a new variant of AMSGrad, a popular adaptive gradient based optimization algorithm widely used for training deep neural networks. Our algorithm adds prior knowledge about the sequence of consecutive mini-batch gradients and leverages its u nderlying structure making the gradients sequentially predictable. By exploiting the predictability and ideas from optimistic online learning, the proposed algorithm can accelerate the convergence and increase sample efficiency. After establishing a tighter upper bound under some convexity conditions on the regret, we offer a complimentary view of our algorithm which generalizes the offline and stochastic version of nonconvex optimization. In the nonconvex case, we establish a non-asymptotic convergence bound independently of the initialization. We illustrate the practical speedup on several deep learning models via numerical experiments.
High-fidelity complex engineering simulations are highly predictive, but also computationally expensive and often require substantial computational efforts. The mitigation of computational burden is usually enabled through parallelism in high-perform ance cluster (HPC) architecture. In this paper, an asynchronous constrained batch-parallel Bayesian optimization method is proposed to efficiently solve the computationally-expensive simulation-based optimization problems on the HPC platform, with a budgeted computational resource, where the maximum number of simulations is a constant. The advantages of this method are three-fold. First, the efficiency of the Bayesian optimization is improved, where multiple input locations are evaluated massively parallel in an asynchronous manner to accelerate the optimization convergence with respect to physical runtime. This efficiency feature is further improved so that when each of the inputs is finished, another input is queried without waiting for the whole batch to complete. Second, the method can handle both known and unknown constraints. Third, the proposed method considers several acquisition functions at the same time and sample based on an evolving probability mass distribution function using a modified GP-Hedge scheme, where parameters are corresponding to the performance of each acquisition function. The proposed framework is termed aphBO-2GP-3B, which corresponds to asynchronous parallel hedge Bayesian optimization with two Gaussian processes and three batches. The aphBO-2GP-3B framework is demonstrated using two high-fidelity expensive industrial applications, where the first one is based on finite element analysis (FEA) and the second one is based on computational fluid dynamics (CFD) simulations.
We consider functional outlier detection from a geometric perspective, specifically: for functional data sets drawn from a functional manifold which is defined by the datas modes of variation in amplitude and phase. Based on this manifold, we develop a conceptualization of functional outlier detection that is more widely applicable and realistic than previously proposed. Our theoretical and experimental analyses demonstrate several important advantages of this perspective: It considerably improves theoretical understanding and allows to describe and analyse complex functional outlier scenarios consistently and in full generality, by differentiating between structurally anomalous outlier data that are off-manifold and distributionally outlying data that are on-manifold but at its margins. This improves practical feasibility of functional outlier detection: We show that simple manifold learning methods can be used to reliably infer and visualize the geometric structure of functional data sets. We also show that standard outlier detection methods requiring tabular data inputs can be applied to functional data very successfully by simply using their vector-valued representations learned from manifold learning methods as input features. Our experiments on synthetic and real data sets demonstrate that this approach leads to outlier detection performances at least on par with existing functional data-specific methods in a large variety of settings, without the highly specialized, complex methodology and narrow domain of application these methods often entail.
Bayesian optimal experimental design (BOED) is a principled framework for making efficient use of limited experimental resources. Unfortunately, its applicability is hampered by the difficulty of obtaining accurate estimates of the expected informati on gain (EIG) of an experiment. To address this, we introduce several classes of fast EIG estimators by building on ideas from amortized variational inference. We show theoretically and empirically that these estimators can provide significant gains in speed and accuracy over previous approaches. We further demonstrate the practicality of our approach on a number of end-to-end experiments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا