ﻻ يوجد ملخص باللغة العربية
Conventional strategies of quantum metrology are built upon POVMs, thereby possessing several general features, including the demolition of the state to be measured, the need of performing a number of measurements, and the degradation of performance under decoherence and dissipation. Here, we propose an innovative measurement scheme, called dissipative adiabatic measurements (DAMs), based on which, we further develop an approach to estimation of parameters characterizing dissipative processes. Unlike a POVM, whose outcome is one of the eigenvalues of an observable, a DAM yields the expectation value of the observable as its outcome, without collapsing the state to be measured. By virtue of the very nature of DAMs, our approach is capable of solving the estimation problem in a state-protective fashion with only $M$ measurements, where $M$ is the number of parameters to be estimated. More importantly, contrary to the common wisdom, it embraces decoherence and dissipation as beneficial effects and offers a Heisenberg-like scaling of precision, thus outperforming conventional strategies. Our DAM-based approach is direct, efficient, and expected to be immensely useful in the context of dissipative quantum information processing.
Quantum metrology pursues high-precision measurements to physical quantities by using quantum resources. However, the decoherence generally hinders its performance. Previous work found that the metrology error tends to divergent in the long-encoding-
Quantum metrology research promises approaches to build new sensors that achieve the ultimate level of precision measurement and perform fundamentally better than modern sensors. Practical schemes that tolerate realistic fabrication imperfections and
Quantum Metrology is one of the most promising application of quantum technologies. The aim of this research field is the estimation of unknown parameters exploiting quantum resources, whose application can lead to enhanced performances with respect
Quantum metrology fundamentally relies upon the efficient management of quantum uncertainties. We show that, under equilibrium conditions, the management of quantum noise becomes extremely flexible around the quantum critical point of a quantum many-
The main obstacle for practical quantum technology is the noise, which can induce the decoherence and destroy the potential quantum advantages. The fluctuation of a field, which induces the dephasing of the system, is one of the most common noises an