ﻻ يوجد ملخص باللغة العربية
Quantum metrology fundamentally relies upon the efficient management of quantum uncertainties. We show that, under equilibrium conditions, the management of quantum noise becomes extremely flexible around the quantum critical point of a quantum many-body system: this is due to the critical divergence of quantum fluctuations of the order parameter, which, via Heisenbergs inequalities, may lead to the critical suppression of the fluctuations in conjugate observables. Taking the quantum Ising model as the paradigmatic incarnation of quantum phase transitions, we show that it exhibits quantum critical squeezing of one spin component, providing a scaling for the precision of interferometric parameter estimation which, in dimensions $d geq 2$, lies in between the standard quantum limit and the Heisenberg limit. Quantum critical squeezing saturates the maximum metrological gain allowed by the quantum Fisher information in $d=infty$ (or with infinite-range interactions) at all temperatures, and it approaches closely the bound in a broad range of temperatures in $d=2$ and 3. This demonstrates the immediate metrological potential of equilibrium many-body states close to quantum criticality, which are accessible emph{e.g.} to atomic quantum simulators via elementary adiabatic protocols.
Including collisional decoherence explicitly, phase sensitivity for estimating effective scattering strength $chi$ of a two-component Bose-Einstein condensate is derived analytically. With a measurement of spin operator $hat{J}_{x}$, we find that the
We propose a scheme to realize high-precision quantum interferometry with entangled non-Gaussian states by driving the system through quantum phase transitions. The beam splitting, in which an initial non-degenerate groundstate evolves into a highly
Physical systems close to a quantum phase transition exhibit a divergent susceptibility, suggesting that an arbitrarily-high precision may be achieved by exploiting quantum critical systems as probes to estimate a physical parameter. However, such an
The Lipkin-Meshkov-Glick (LMG) model describes critical systems with interaction beyond the first-neighbor approximation. Here we address the characterization of LMG systems, i.e. the estimation of anisotropy, and show how criticality may be exploite
The diverging responses to parameter variations of systems at quantum critical points motivate schemes of quantum metrology that feature sub-Heisenberg scaling of the sensitivity with the system size (e.g., the number of particles). This sensitivity