ترغب بنشر مسار تعليمي؟ اضغط هنا

Practical Quantum Metrology

218   0   0.0 ( 0 )
 نشر من قبل Jonathan Matthews
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum metrology research promises approaches to build new sensors that achieve the ultimate level of precision measurement and perform fundamentally better than modern sensors. Practical schemes that tolerate realistic fabrication imperfections and environmental noise are required in order to realise quantum-enhanced sensors and to enable their real-world application. We have demonstrated the key enabling principles of a practical, loss-tolerant approach to photonic quantum metrology designed to harness all multi-photon components in spontaneous parametric downconversion---a method for generating multiple photons that we show requires no further fundamental state engineering for use in practical quantum metrology. We observe a quantum advantage of 28% in precision measurement of optical phase using the four-photon detection component of this scheme, despite 83% system loss. This opens the way to new quantum sensors based on current quantum-optical capabilities.



قيم البحث

اقرأ أيضاً

Noise is the greatest obstacle in quantum metrology that limits it achievable precision and sensitivity. There are many techniques to mitigate the effect of noise, but this can never be done completely. One commonly proposed technique is to repeatedl y apply quantum error correction. Unfortunately, the required repetition frequency needed to recover the Heisenberg limit is unachievable with the existing quantum technologies. In this article we explore the discrete application of quantum error correction with current technological limitations in mind. We establish that quantum error correction can be beneficial and highlight the factors which need to be improved so one can reliably reach the Heisenberg limit level precision.
Conventional strategies of quantum metrology are built upon POVMs, thereby possessing several general features, including the demolition of the state to be measured, the need of performing a number of measurements, and the degradation of performance under decoherence and dissipation. Here, we propose an innovative measurement scheme, called dissipative adiabatic measurements (DAMs), based on which, we further develop an approach to estimation of parameters characterizing dissipative processes. Unlike a POVM, whose outcome is one of the eigenvalues of an observable, a DAM yields the expectation value of the observable as its outcome, without collapsing the state to be measured. By virtue of the very nature of DAMs, our approach is capable of solving the estimation problem in a state-protective fashion with only $M$ measurements, where $M$ is the number of parameters to be estimated. More importantly, contrary to the common wisdom, it embraces decoherence and dissipation as beneficial effects and offers a Heisenberg-like scaling of precision, thus outperforming conventional strategies. Our DAM-based approach is direct, efficient, and expected to be immensely useful in the context of dissipative quantum information processing.
Quantum Metrology is one of the most promising application of quantum technologies. The aim of this research field is the estimation of unknown parameters exploiting quantum resources, whose application can lead to enhanced performances with respect to classical strategies. Several physical quantum systems can be employed to develop quantum sensors, and photonic systems represent ideal probes for a large number of metrological tasks. Here we review the basic concepts behind quantum metrology and then focus on the application of photonic technology for this task, with particular attention to phase estimation. We describe the current state of the art in the field in terms of platforms and quantum resources. Furthermore, we present the research area of multiparameter quantum metrology, where multiple parameters have to be estimated at the same time. We conclude by discussing the current experimental and theoretical challenges, and the open questions towards implementation of photonic quantum sensors with quantum-enhanced performances in the presence of noise.
Quantum metrology fundamentally relies upon the efficient management of quantum uncertainties. We show that, under equilibrium conditions, the management of quantum noise becomes extremely flexible around the quantum critical point of a quantum many- body system: this is due to the critical divergence of quantum fluctuations of the order parameter, which, via Heisenbergs inequalities, may lead to the critical suppression of the fluctuations in conjugate observables. Taking the quantum Ising model as the paradigmatic incarnation of quantum phase transitions, we show that it exhibits quantum critical squeezing of one spin component, providing a scaling for the precision of interferometric parameter estimation which, in dimensions $d geq 2$, lies in between the standard quantum limit and the Heisenberg limit. Quantum critical squeezing saturates the maximum metrological gain allowed by the quantum Fisher information in $d=infty$ (or with infinite-range interactions) at all temperatures, and it approaches closely the bound in a broad range of temperatures in $d=2$ and 3. This demonstrates the immediate metrological potential of equilibrium many-body states close to quantum criticality, which are accessible emph{e.g.} to atomic quantum simulators via elementary adiabatic protocols.
The main obstacle for practical quantum technology is the noise, which can induce the decoherence and destroy the potential quantum advantages. The fluctuation of a field, which induces the dephasing of the system, is one of the most common noises an d widely regarded as detrimental to quantum technologies. Here we show, contrary to the conventional belief, the fluctuation can be used to improve the precision limits in quantum metrology for the estimation of various parameters. Specifically, we show that for the estimation of the direction and rotating frequency of a field, the achieved precisions at the presence of the fluctuation can even surpass the highest precision achievable under the unitary dynamics which have been widely taken as the ultimate limit. We provide explicit protocols, which employs the adaptive quantum error correction, to achieve the higher precision limits with the fluctuating fields. Our study provides a completely new perspective on the role of the noises in quantum metrology. It also opens the door for higher precisions beyond the limit that has been believed to be ultimate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا