ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluctuation-enhanced quantum metrology

83   0   0.0 ( 0 )
 نشر من قبل Haidong Yuan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The main obstacle for practical quantum technology is the noise, which can induce the decoherence and destroy the potential quantum advantages. The fluctuation of a field, which induces the dephasing of the system, is one of the most common noises and widely regarded as detrimental to quantum technologies. Here we show, contrary to the conventional belief, the fluctuation can be used to improve the precision limits in quantum metrology for the estimation of various parameters. Specifically, we show that for the estimation of the direction and rotating frequency of a field, the achieved precisions at the presence of the fluctuation can even surpass the highest precision achievable under the unitary dynamics which have been widely taken as the ultimate limit. We provide explicit protocols, which employs the adaptive quantum error correction, to achieve the higher precision limits with the fluctuating fields. Our study provides a completely new perspective on the role of the noises in quantum metrology. It also opens the door for higher precisions beyond the limit that has been believed to be ultimate.

قيم البحث

اقرأ أيضاً

The accumulation of quantum phase in response to a signal is the central mechanism of quantum sensing, as such, loss of phase information presents a fundamental limitation. For this reason approaches to extend quantum coherence in the presence of noi se are actively being explored. Here we experimentally protect a room-temperature hybrid spin register against environmental decoherence by performing repeated quantum error correction whilst maintaining sensitivity to signal fields. We use a long-lived nuclear spin to correct multiple phase errors on a sensitive electron spin in diamond and realize magnetic field sensing beyond the timescales set by natural decoherence. The universal extension of sensing time, robust to noise at any frequency, demonstrates the definitive advantage entangled multi-qubit systems provide for quantum sensing and offers an important complement to quantum control techniques. In particular, our work opens the door for detecting minute signals in the presence of high frequency noise, where standard protocols reach their limits.
153 - Xiaodong Yang , Xi Chen , Jun Li 2020
Quantum metrology plays a fundamental role in many scientific areas. However, the complexity of engineering entangled probes and the external noise raise technological barriers for realizing the expected precision of the to-be-estimated parameter wit h given resources. Here, we address this problem by introducing adjustable controls into the encoding process and then utilizing a hybrid quantum-classical approach to automatically optimize the controls online. Our scheme does not require any complex or intractable off-line design, and it can inherently correct certain unitary errors during the learning procedure. We also report the first experimental demonstration of this promising scheme for the task of finding optimal probes for frequency estimation on a nuclear magnetic resonance (NMR) processor. The proposed scheme paves the way to experimentally auto-search optimal protocol for improving the metrology precision.
We provide efficient and intuitive tools for deriving bounds on achievable precision in quantum enhanced metrology based on the geometry of quantum channels and semi-definite programming. We show that when decoherence is taken into account, the maxim al possible quantum enhancement amounts generically to a constant factor rather than quadratic improvement. We apply these tools to derive bounds for models of decoherence relevant for metrological applications including: dephasing,depolarization, spontaneous emission and photon loss.
We show that continuous quantum nondemolition (QND) measurement of an atomic ensemble is able to improve the precision of frequency estimation even in the presence of independent dephasing acting on each atom. We numerically simulate the dynamics of an ensemble with up to N = 150 atoms initially prepared in a (classical) spin coherent state, and we show that, thanks to the spin squeezing dynamically generated by the measurement, the information obtainable from the continuous photocurrent scales superclassically with respect to the number of atoms N. We provide evidence that such superclassical scaling holds for different values of dephasing and monitoring efficiency. We moreover calculate the extra information obtainable via a final strong measurement on the conditional states generated during the dynamics and show that the corresponding ultimate limit is nearly achieved via a projective measurement of the spin-squeezed collective spin operator. We also briefly discuss the difference between our protocol and standard estimation schemes, where the state preparation time is neglected.
Ramsey interferometry is routinely used in quantum metrology for the most sensitive measurements of optical clock frequencies. Spontaneous decay to the electromagnetic vacuum ultimately limits the interrogation time and thus sets a lower bound to the optimal frequency sensitivity. In dense ensembles of two-level systems the presence of collective effects such as superradiance and dipole-dipole interaction tends to decrease the sensitivity even further. We show that by a redesign of the Ramsey-pulse sequence to include different rotations of individual spins that effectively fold the collective state onto a state close to the center of the Bloch sphere, partial protection from collective decoherence and dephasing is possible. This allows a significant improvement in the sensitivity limit of a clock transition detection scheme over the conventional Ramsey method for interacting systems and even for non-interacting decaying atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا