ﻻ يوجد ملخص باللغة العربية
Recent rapid development of machine learning is largely due to algorithmic breakthroughs, computation resource development, and especially the access to a large amount of training data. However, though data sharing has the great potential of improving machine learning models and enabling new applications, there have been increasing concerns about the privacy implications of data collection. In this work, we present a novel approach for training differentially private data generator G-PATE. The generator can be used to produce synthetic datasets with strong privacy guarantee while preserving high data utility. Our approach leverages generative adversarial nets (GAN) to generate data and protect data privacy based on the Private Aggregation of Teacher Ensembles (PATE) framework. Our approach improves the use of privacy budget by only ensuring differential privacy for the generator, which is the part of the model that actually needs to be published for private data generation. To achieve this, we connect a student generator with an ensemble of teacher discriminators. We also propose a private gradient aggregation mechanism to ensure differential privacy on all the information that flows from the teacher discriminators to the student generator. We empirically show that the G-PATE significantly outperforms prior work on both image and non-image datasets.
The rapid adoption of machine learning has increased concerns about the privacy implications of machine learning models trained on sensitive data, such as medical records or other personal information. To address those concerns, one promising approac
Interpretable predictions, where it is clear why a machine learning model has made a particular decision, can compromise privacy by revealing the characteristics of individual data points. This raises the central question addressed in this paper: Can
Developing machine learning methods that are privacy preserving is today a central topic of research, with huge practical impacts. Among the numerous ways to address privacy-preserving learning, we here take the perspective of computing the divergenc
We present differentially private efficient algorithms for learning union of polygons in the plane (which are not necessarily convex). Our algorithms achieve $(alpha,beta)$-PAC learning and $(epsilon,delta)$-differential privacy using a sample of siz
We study locally differentially private (LDP) bandits learning in this paper. First, we propose simple black-box reduction frameworks that can solve a large family of context-free bandits learning problems with LDP guarantee. Based on our frameworks,