ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpretable and Differentially Private Predictions

78   0   0.0 ( 0 )
 نشر من قبل Frederik Harder
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Interpretable predictions, where it is clear why a machine learning model has made a particular decision, can compromise privacy by revealing the characteristics of individual data points. This raises the central question addressed in this paper: Can models be interpretable without compromising privacy? For complex big data fit by correspondingly rich models, balancing privacy and explainability is particularly challenging, such that this question has remained largely unexplored. In this paper, we propose a family of simple models in the aim of approximating complex models using several locally linear maps per class to provide high classification accuracy, as well as differentially private explanations on the classification. We illustrate the usefulness of our approach on several image benchmark datasets as well as a medical dataset.

قيم البحث

اقرأ أيضاً

Developing machine learning methods that are privacy preserving is today a central topic of research, with huge practical impacts. Among the numerous ways to address privacy-preserving learning, we here take the perspective of computing the divergenc es between distributions under the Differential Privacy (DP) framework -- being able to compute divergences between distributions is pivotal for many machine learning problems, such as learning generative models or domain adaptation problems. Instead of resorting to the popular gradient-based sanitization method for DP, we tackle the problem at its roots by focusing on the Sliced Wasserstein Distance and seamlessly making it differentially private. Our main contribution is as follows: we analyze the property of adding a Gaussian perturbation to the intrinsic randomized mechanism of the Sliced Wasserstein Distance, and we establish the sensitivityof the resulting differentially private mechanism. One of our important findings is that this DP mechanism transforms the Sliced Wasserstein distance into another distance, that we call the Smoothed Sliced Wasserstein Distance. This new differentially private distribution distance can be plugged into generative models and domain adaptation algorithms in a transparent way, and we empirically show that it yields highly competitive performance compared with gradient-based DP approaches from the literature, with almost no loss in accuracy for the domain adaptation problems that we consider.
We present differentially private efficient algorithms for learning union of polygons in the plane (which are not necessarily convex). Our algorithms achieve $(alpha,beta)$-PAC learning and $(epsilon,delta)$-differential privacy using a sample of siz e $tilde{O}left(frac{1}{alphaepsilon}klog dright)$, where the domain is $[d]times[d]$ and $k$ is the number of edges in the union of polygons.
We study locally differentially private (LDP) bandits learning in this paper. First, we propose simple black-box reduction frameworks that can solve a large family of context-free bandits learning problems with LDP guarantee. Based on our frameworks, we can improve previous best results for private bandits learning with one-point feedback, such as private Bandits Convex Optimization, and obtain the first result for Bandits Convex Optimization (BCO) with multi-point feedback under LDP. LDP guarantee and black-box nature make our frameworks more attractive in real applications compared with previous specifically designed and relatively weaker differentially private (DP) context-free bandits algorithms. Further, we extend our $(varepsilon, delta)$-LDP algorithm to Generalized Linear Bandits, which enjoys a sub-linear regret $tilde{O}(T^{3/4}/varepsilon)$ and is conjectured to be nearly optimal. Note that given the existing $Omega(T)$ lower bound for DP contextual linear bandits (Shariff & Sheffe, 2018), our result shows a fundamental difference between LDP and DP contextual bandits learning.
In this paper, we study Combinatorial Semi-Bandits (CSB) that is an extension of classic Multi-Armed Bandits (MAB) under Differential Privacy (DP) and stronger Local Differential Privacy (LDP) setting. Since the server receives more information from users in CSB, it usually causes additional dependence on the dimension of data, which is a notorious side-effect for privacy preserving learning. However for CSB under two common smoothness assumptions cite{kveton2015tight,chen2016combinatorial}, we show it is possible to remove this side-effect. In detail, for $B_{infty}$-bounded smooth CSB under either $varepsilon$-LDP or $varepsilon$-DP, we prove the optimal regret bound is $Theta(frac{mB^2_{infty}ln T } {Deltaepsilon^2})$ or $tilde{Theta}(frac{mB^2_{infty}ln T} { Deltaepsilon})$ respectively, where $T$ is time period, $Delta$ is the gap of rewards and $m$ is the number of base arms, by proposing novel algorithms and matching lower bounds. For $B_1$-bounded smooth CSB under $varepsilon$-DP, we also prove the optimal regret bound is $tilde{Theta}(frac{mKB^2_1ln T} {Deltaepsilon})$ with both upper bound and lower bound, where $K$ is the maximum number of feedback in each round. All above results nearly match corresponding non-private optimal rates, which imply there is no additional price for (locally) differentially private CSB in above common settings.
One of the most common statistical goals is to estimate a population parameter and quantify uncertainty by constructing a confidence interval. However, the field of differential privacy lacks easy-to-use and general methods for doing so. We partially fill this gap by developing two broadly applicable methods for private confidence-interval construction. The first is based on asymptotics: for two widely used model classes, exponential families and linear regression, a simple private estimator has the same asymptotic normal distribution as the corresponding non-private estimator, so confidence intervals can be constructed using quantiles of the normal distribution. These are computationally cheap and accurate for large data sets, but do not have good coverage for small data sets. The second approach is based on the parametric bootstrap. It applies out of the box to a wide class of private estimators and has good coverage at small sample sizes, but with increased computational cost. Both methods are based on post-processing the private estimator and do not consume additional privacy budget.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا