ترغب بنشر مسار تعليمي؟ اضغط هنا

Differentially Private Learning of Geometric Concepts

125   0   0.0 ( 0 )
 نشر من قبل Uri Stemmer
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We present differentially private efficient algorithms for learning union of polygons in the plane (which are not necessarily convex). Our algorithms achieve $(alpha,beta)$-PAC learning and $(epsilon,delta)$-differential privacy using a sample of size $tilde{O}left(frac{1}{alphaepsilon}klog dright)$, where the domain is $[d]times[d]$ and $k$ is the number of edges in the union of polygons.



قيم البحث

اقرأ أيضاً

We study locally differentially private (LDP) bandits learning in this paper. First, we propose simple black-box reduction frameworks that can solve a large family of context-free bandits learning problems with LDP guarantee. Based on our frameworks, we can improve previous best results for private bandits learning with one-point feedback, such as private Bandits Convex Optimization, and obtain the first result for Bandits Convex Optimization (BCO) with multi-point feedback under LDP. LDP guarantee and black-box nature make our frameworks more attractive in real applications compared with previous specifically designed and relatively weaker differentially private (DP) context-free bandits algorithms. Further, we extend our $(varepsilon, delta)$-LDP algorithm to Generalized Linear Bandits, which enjoys a sub-linear regret $tilde{O}(T^{3/4}/varepsilon)$ and is conjectured to be nearly optimal. Note that given the existing $Omega(T)$ lower bound for DP contextual linear bandits (Shariff & Sheffe, 2018), our result shows a fundamental difference between LDP and DP contextual bandits learning.
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users. However, an adversary may still be able to infer the private training data by attacking the released model. Differential pri vacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models. In this paper, we investigate a utility enhancement scheme based on Laplacian smoothing for differentially private federated learning (DP-Fed-LS), where the parameter aggregation with injected Gaussian noise is improved in statistical precision without losing privacy budget. Our key observation is that the aggregated gradients in federated learning often enjoy a type of smoothness, i.e. sparsity in the graph Fourier basis with polynomial decays of Fourier coefficients as frequency grows, which can be exploited by the Laplacian smoothing efficiently. Under a prescribed differential privacy budget, convergence error bounds with tight rates are provided for DP-Fed-LS with uniform subsampling of heterogeneous Non-IID data, revealing possible utility improvement of Laplacian smoothing in effective dimensionality and variance reduction, among others. Experiments over MNIST, SVHN, and Shakespeare datasets show that the proposed method can improve model accuracy with DP-guarantee and membership privacy under both uniform and Poisson subsampling mechanisms.
Motivated by settings in which predictive models may be required to be non-discriminatory with respect to certain attributes (such as race), but even collecting the sensitive attribute may be forbidden or restricted, we initiate the study of fair lea rning under the constraint of differential privacy. We design two learning algorithms that simultaneously promise differential privacy and equalized odds, a fairness condition that corresponds to equalizing false positive and negative rates across protected groups. Our first algorithm is a private implementation of the equalized odds post-processing approach of [Hardt et al., 2016]. This algorithm is appealingly simple, but must be able to use protected group membership explicitly at test time, which can be viewed as a form of disparate treatment. Our second algorithm is a differentially private version of the oracle-efficient in-processing approach of [Agarwal et al., 2018] that can be used to find the optimal fair classifier, given access to a subroutine that can solve the original (not necessarily fair) learning problem. This algorithm is more complex but need not have access to protected group membership at test time. We identify new tradeoffs between fairness, accuracy, and privacy that emerge only when requiring all three properties, and show that these tradeoffs can be milder if group membership may be used at test time. We conclude with a brief experimental evaluation.
The use of collaborative and decentralized machine learning techniques such as federated learning have the potential to enable the development and deployment of clinical risk predictions models in low-resource settings without requiring sensitive dat a be shared or stored in a central repository. This process necessitates communication of model weights or updates between collaborating entities, but it is unclear to what extent patient privacy is compromised as a result. To gain insight into this question, we study the efficacy of centralized versus federated learning in both private and non-private settings. The clinical prediction tasks we consider are the prediction of prolonged length of stay and in-hospital mortality across thirty one hospitals in the eICU Collaborative Research Database. We find that while it is straightforward to apply differentially private stochastic gradient descent to achieve strong privacy bounds when training in a centralized setting, it is considerably more difficult to do so in the federated setting.
Interpretable predictions, where it is clear why a machine learning model has made a particular decision, can compromise privacy by revealing the characteristics of individual data points. This raises the central question addressed in this paper: Can models be interpretable without compromising privacy? For complex big data fit by correspondingly rich models, balancing privacy and explainability is particularly challenging, such that this question has remained largely unexplored. In this paper, we propose a family of simple models in the aim of approximating complex models using several locally linear maps per class to provide high classification accuracy, as well as differentially private explanations on the classification. We illustrate the usefulness of our approach on several image benchmark datasets as well as a medical dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا