ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying and Predicting Parkinsons Disease Subtypes through Trajectory Clustering via Bipartite Networks

126   0   0.0 ( 0 )
 نشر من قبل Sanjukta Krishnagopal
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Parkinsons disease (PD) is a common neurodegenerative disease with a high degree of heterogeneity in its clinical features, rate of progression, and change of variables over time. In this work, we present a novel data-driven, network-based Trajectory Profile Clustering (TPC) algorithm for 1) identification of PD subtypes and 2) early prediction of disease progression in individual patients. Our subtype identification is based not only on PD variables, but also on their complex patterns of progression, providing a useful tool for the analysis of large heterogenous, longitudinal data. Specifically, we cluster patients based on the similarity of their trajectories through a time series of bipartite networks connecting patients to demographic, clinical, and genetic variables. We apply this approach to demographic and clinical data from the Parkinsons Progression Markers Initiative (PPMI) dataset and identify 3 patient clusters, consistent with 3 distinct PD subtypes, each with a characteristic variable progression profile. Additionally, TPC predicts an individual patients subtype and future disease trajectory, based on baseline assessments. Application of our approach resulted in 74% accurate subtype prediction in year 5 in a test/validation cohort. Furthermore, we show that genetic variability can be integrated seamlessly in our TPC approach. In summary, using PD as a model for chronic progressive diseases, we show that TPC leverages high-dimensional longitudinal datasets for subtype identification and early prediction of individual disease subtype. We anticipate this approach will be broadly applicable to multidimensional longitudinal datasets in diverse chronic diseases.



قيم البحث

اقرأ أيضاً

Parkinsons disease (PD) is the second most common neurodegenerative disease worldwide and affects around 1% of the (60+ years old) elderly population in industrial nations. More than 80% of PD patients suffer from motor symptoms, which could be well addressed if a personalized medication schedule and dosage could be administered to them. However, such personalized medication schedule requires a continuous, objective and precise measurement of motor symptoms experienced by the patients during their regular daily activities. In this work, we propose the use of a wrist-worn smart-watch, which is equipped with 3D motion sensors, for estimating the motor fluctuation severity of PD patients in a free-living environment. We introduce a novel network architecture, a post-training scheme and a custom loss function that accounts for label noise to improve the results of our previous work in this domain and to establish a novel benchmark for nine-level PD motor state estimation.
Alzheimers disease (AD) and Parkinsons disease (PD) are the two most common neurodegenerative disorders in humans. Because a significant percentage of patients have clinical and pathological features of both diseases, it has been hypothesized that th e patho-cascades of the two diseases overlap. Despite this evidence, these two diseases are rarely studied in a joint manner. In this paper, we utilize clinical, imaging, genetic, and biospecimen features to cluster AD and PD patients into the same feature space. By training a machine learning classifier on the combined feature space, we predict the disease stage of patients two years after their baseline visits. We observed a considerable improvement in the prediction accuracy of Parkinsons dementia patients due to combined training on Alzheimers and Parkinsons patients, thereby affirming the claim that these two diseases can be jointly studied.
Disease mapping is the field of spatial epidemiology interested in estimating the spatial pattern in disease risk across $n$ areal units. One aim is to identify units exhibiting elevated disease risks, so that public health interventions can be made. Bayesian hierarchical models with a spatially smooth conditional autoregressive prior are used for this purpose, but they cannot identify the spatial extent of high-risk clusters. Therefore we propose a two stage solution to this problem, with the first stage being a spatially adjusted hierarchical agglomerative clustering algorithm. This algorithm is applied to data prior to the study period, and produces $n$ potential cluster structures for the disease data. The second stage fits a separate Poisson log-linear model to the study data for each cluster structure, which allows for step-changes in risk where two clusters meet. The most appropriate cluster structure is chosen by model comparison techniques, specifically by minimising the Deviance Information Criterion. The efficacy of the methodology is established by a simulation study, and is illustrated by a study of respiratory disease risk in Glasgow, Scotland.
Parkinsons Disease is a neurological disorder and prevalent in elderly people. Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests. The high-resolution longitudinal acti vity data collected by smartphone applications nowadays make it possible to conduct remote and convenient health assessment. However, out-of-lab tests often suffer from poor quality controls as well as irregularly collected observations, leading to noisy test results. To address these issues, we propose a novel time-series based approach to predicting Parkinsons Disease with raw activity test data collected by smartphones in the wild. The proposed method first synchronizes discrete activity tests into multimodal features at unified time points. Next, it distills and enriches local and global representations from noisy data across modalities and temporal observations by two attention modules. With the proposed mechanisms, our model is capable of handling noisy observations and at the same time extracting refined temporal features for improved prediction performance. Quantitative and qualitative results on a large public dataset demonstrate the effectiveness of the proposed approach.
While the emerging evidence indicates that the pathogenesis of Parkinsons disease (PD) is strongly correlated to the accumulation of alpha-synuclein ({alpha}-syn) aggregates, there has been no clinical success in anti-aggregation agents for the disea se to date. Here we show that graphene quantum dots (GQDs) exhibit anti-amyloid activity via direct interaction with {alpha}-syn. Employing biophysical, biochemical, and cell-based assays as well as molecular dynamics (MD) simulation, we find that GQDs have notable potency in not only inhibiting fibrillization of {alpha}-syn but also disaggregating mature fibrils in a time-dependent manner. Remarkably, GQDs rescue neuronal death and synaptic loss, reduce Lewy body (LB)/Lewy neurite (LN) formation, ameliorate mitochondrial dysfunctions, and prevent neuron-to-neuron transmission of {alpha}-syn pathology induced by {alpha}-syn preformed fibrils (PFFs) in neurons. In addition, in vivo administration of GQDs protects against {alpha}-syn PFFs-induced loss of dopamine neurons, LB/LN pathology, and behavioural deficits through the penetration of the blood-brain barrier (BBB). The finding that GQDs function as an anti-aggregation agent provides a promising novel therapeutic target for the treatment of PD and related {alpha}-synucleinopathies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا