ﻻ يوجد ملخص باللغة العربية
Parkinsons disease (PD) is a common neurodegenerative disease with a high degree of heterogeneity in its clinical features, rate of progression, and change of variables over time. In this work, we present a novel data-driven, network-based Trajectory Profile Clustering (TPC) algorithm for 1) identification of PD subtypes and 2) early prediction of disease progression in individual patients. Our subtype identification is based not only on PD variables, but also on their complex patterns of progression, providing a useful tool for the analysis of large heterogenous, longitudinal data. Specifically, we cluster patients based on the similarity of their trajectories through a time series of bipartite networks connecting patients to demographic, clinical, and genetic variables. We apply this approach to demographic and clinical data from the Parkinsons Progression Markers Initiative (PPMI) dataset and identify 3 patient clusters, consistent with 3 distinct PD subtypes, each with a characteristic variable progression profile. Additionally, TPC predicts an individual patients subtype and future disease trajectory, based on baseline assessments. Application of our approach resulted in 74% accurate subtype prediction in year 5 in a test/validation cohort. Furthermore, we show that genetic variability can be integrated seamlessly in our TPC approach. In summary, using PD as a model for chronic progressive diseases, we show that TPC leverages high-dimensional longitudinal datasets for subtype identification and early prediction of individual disease subtype. We anticipate this approach will be broadly applicable to multidimensional longitudinal datasets in diverse chronic diseases.
Parkinsons disease (PD) is the second most common neurodegenerative disease worldwide and affects around 1% of the (60+ years old) elderly population in industrial nations. More than 80% of PD patients suffer from motor symptoms, which could be well
Alzheimers disease (AD) and Parkinsons disease (PD) are the two most common neurodegenerative disorders in humans. Because a significant percentage of patients have clinical and pathological features of both diseases, it has been hypothesized that th
Disease mapping is the field of spatial epidemiology interested in estimating the spatial pattern in disease risk across $n$ areal units. One aim is to identify units exhibiting elevated disease risks, so that public health interventions can be made.
Parkinsons Disease is a neurological disorder and prevalent in elderly people. Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests. The high-resolution longitudinal acti
While the emerging evidence indicates that the pathogenesis of Parkinsons disease (PD) is strongly correlated to the accumulation of alpha-synuclein ({alpha}-syn) aggregates, there has been no clinical success in anti-aggregation agents for the disea