ﻻ يوجد ملخص باللغة العربية
Disease mapping is the field of spatial epidemiology interested in estimating the spatial pattern in disease risk across $n$ areal units. One aim is to identify units exhibiting elevated disease risks, so that public health interventions can be made. Bayesian hierarchical models with a spatially smooth conditional autoregressive prior are used for this purpose, but they cannot identify the spatial extent of high-risk clusters. Therefore we propose a two stage solution to this problem, with the first stage being a spatially adjusted hierarchical agglomerative clustering algorithm. This algorithm is applied to data prior to the study period, and produces $n$ potential cluster structures for the disease data. The second stage fits a separate Poisson log-linear model to the study data for each cluster structure, which allows for step-changes in risk where two clusters meet. The most appropriate cluster structure is chosen by model comparison techniques, specifically by minimising the Deviance Information Criterion. The efficacy of the methodology is established by a simulation study, and is illustrated by a study of respiratory disease risk in Glasgow, Scotland.
Parkinsons disease (PD) is a common neurodegenerative disease with a high degree of heterogeneity in its clinical features, rate of progression, and change of variables over time. In this work, we present a novel data-driven, network-based Trajectory
We present a novel approach for the analysis of multivariate case-control georeferenced data using Bayesian inference in the context of disease mapping, where the spatial distribution of different types of cancers is analyzed. Extending other methodo
Existing methods to estimate the prevalence of chronic hepatitis C (HCV) in New York City (NYC) are limited in scope and fail to assess hard-to-reach subpopulations with highest risk such as injecting drug users (IDUs). To address these limitations,
The Banana Bunchy Top Virus (BBTV) is one of the most economically important vector-borne banana diseases throughout the Asia-Pacific Basin and presents a significant challenge to the agricultural sector. Current models of BBTV are largely determinis
In disease mapping, the aim is to estimate the spatial pattern in disease risk over an extended geographical region, so that areas with elevated risks can be identified. A Bayesian hierarchical approach is typically used to produce such maps, which m