ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying Clusters in Bayesian Disease Mapping

98   0   0.0 ( 0 )
 نشر من قبل Craig Anderson Mr
 تاريخ النشر 2013
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Disease mapping is the field of spatial epidemiology interested in estimating the spatial pattern in disease risk across $n$ areal units. One aim is to identify units exhibiting elevated disease risks, so that public health interventions can be made. Bayesian hierarchical models with a spatially smooth conditional autoregressive prior are used for this purpose, but they cannot identify the spatial extent of high-risk clusters. Therefore we propose a two stage solution to this problem, with the first stage being a spatially adjusted hierarchical agglomerative clustering algorithm. This algorithm is applied to data prior to the study period, and produces $n$ potential cluster structures for the disease data. The second stage fits a separate Poisson log-linear model to the study data for each cluster structure, which allows for step-changes in risk where two clusters meet. The most appropriate cluster structure is chosen by model comparison techniques, specifically by minimising the Deviance Information Criterion. The efficacy of the methodology is established by a simulation study, and is illustrated by a study of respiratory disease risk in Glasgow, Scotland.



قيم البحث

اقرأ أيضاً

Parkinsons disease (PD) is a common neurodegenerative disease with a high degree of heterogeneity in its clinical features, rate of progression, and change of variables over time. In this work, we present a novel data-driven, network-based Trajectory Profile Clustering (TPC) algorithm for 1) identification of PD subtypes and 2) early prediction of disease progression in individual patients. Our subtype identification is based not only on PD variables, but also on their complex patterns of progression, providing a useful tool for the analysis of large heterogenous, longitudinal data. Specifically, we cluster patients based on the similarity of their trajectories through a time series of bipartite networks connecting patients to demographic, clinical, and genetic variables. We apply this approach to demographic and clinical data from the Parkinsons Progression Markers Initiative (PPMI) dataset and identify 3 patient clusters, consistent with 3 distinct PD subtypes, each with a characteristic variable progression profile. Additionally, TPC predicts an individual patients subtype and future disease trajectory, based on baseline assessments. Application of our approach resulted in 74% accurate subtype prediction in year 5 in a test/validation cohort. Furthermore, we show that genetic variability can be integrated seamlessly in our TPC approach. In summary, using PD as a model for chronic progressive diseases, we show that TPC leverages high-dimensional longitudinal datasets for subtype identification and early prediction of individual disease subtype. We anticipate this approach will be broadly applicable to multidimensional longitudinal datasets in diverse chronic diseases.
We present a novel approach for the analysis of multivariate case-control georeferenced data using Bayesian inference in the context of disease mapping, where the spatial distribution of different types of cancers is analyzed. Extending other methodo logy in point pattern analysis, we propose a log-Gaussian Cox process for point pattern of cases and the controls, which accounts for risk factors, such as exposure to pollution sources, and includes a term to measure spatial residual variation. For each disease, its intensity is modeled on a baseline spatial effect (estimated from both controls and cases), a disease-specific spatial term and the effects on covariates that account for risk factors. By fitting these models the effect of the covariates on the set of cases can be assessed, and the residual spatial terms can be easily compared to detect areas of high risk not explained by the covariates. Three different types of effects to model exposure to pollution sources are considered. First of all, a fixed effect on the distance to the source. Next, smooth terms on the distance are used to model non-linear effects by means of a discrete random walk of order one and a Gaussian process in one dimension with a Matern covariance. Models are fit using the integrated nested Laplace approximation (INLA) so that the spatial terms are approximated using an approach based on solving Stochastic Partial Differential Equations (SPDE). Finally, this new framework is applied to a dataset of three different types of cancer and a set of controls from Alcala de Henares (Madrid, Spain). Covariates available include the distance to several polluting industries and socioeconomic indicators. Our findings point to a possible risk increase due to the proximity to some of these industries.
Existing methods to estimate the prevalence of chronic hepatitis C (HCV) in New York City (NYC) are limited in scope and fail to assess hard-to-reach subpopulations with highest risk such as injecting drug users (IDUs). To address these limitations, we employ a Bayesian multi-parameter evidence synthesis model to systematically combine multiple sources of data, account for bias in certain data sources, and provide unbiased HCV prevalence estimates with associated uncertainty. Our approach improves on previous estimates by explicitly accounting for injecting drug use and including data from high-risk subpopulations such as the incarcerated, and is more inclusive, utilizing ten NYC data sources. In addition, we derive two new equations to allow age at first injecting drug use data for former and current IDUs to be incorporated into the Bayesian evidence synthesis, a first for this type of model. Our estimated overall HCV prevalence as of 2012 among NYC adults aged 20-59 years is 2.78% (95% CI 2.61-2.94%), which represents between 124,900 and 140,000 chronic HCV cases. These estimates suggest that HCV prevalence in NYC is higher than previously indicated from household surveys (2.2%) and the surveillance system (2.37%), and that HCV transmission is increasing among young injecting adults in NYC. An ancillary benefit from our results is an estimate of current IDUs aged 20-59 in NYC: 0.58% or 27,600 individuals.
The Banana Bunchy Top Virus (BBTV) is one of the most economically important vector-borne banana diseases throughout the Asia-Pacific Basin and presents a significant challenge to the agricultural sector. Current models of BBTV are largely determinis tic, limited by an incomplete understanding of interactions in complex natural systems, and the appropriate identification of parameters. A stochastic network-based Susceptible-Infected model has been created which simulates the spread of BBTV across the subsections of a banana plantation, parameterising nodal recovery, neighbouring and distant infectivity across summer and winter. Findings from posterior results achieved through Markov Chain Monte Carlo approach to approximate Bayesian computation suggest seasonality in all parameters, which are influenced by correlated changes in inspection accuracy, temperatures and aphid activity. This paper demonstrates how the model may be used for monitoring and forecasting of various disease management strategies to support policy-level decision making.
In disease mapping, the aim is to estimate the spatial pattern in disease risk over an extended geographical region, so that areas with elevated risks can be identified. A Bayesian hierarchical approach is typically used to produce such maps, which m odels the risk surface with a set of spatially smooth random effects. However, in complex urban settings there are likely to be boundaries in the risk surface, which separate populations that are geographically adjacent but have very different risk profiles. Therefore this paper proposes an approach for detecting such risk boundaries, and tests its effectiveness by simulation. Finally, the model is applied to lung cancer incidence data in Greater Glasgow, Scotland, between 2001 and 2005.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا