ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting Onset of Dementia in Parkinsons Disease Patients

97   0   0.0 ( 0 )
 نشر من قبل Abhishek Srivastava
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Alzheimers disease (AD) and Parkinsons disease (PD) are the two most common neurodegenerative disorders in humans. Because a significant percentage of patients have clinical and pathological features of both diseases, it has been hypothesized that the patho-cascades of the two diseases overlap. Despite this evidence, these two diseases are rarely studied in a joint manner. In this paper, we utilize clinical, imaging, genetic, and biospecimen features to cluster AD and PD patients into the same feature space. By training a machine learning classifier on the combined feature space, we predict the disease stage of patients two years after their baseline visits. We observed a considerable improvement in the prediction accuracy of Parkinsons dementia patients due to combined training on Alzheimers and Parkinsons patients, thereby affirming the claim that these two diseases can be jointly studied.



قيم البحث

اقرأ أيضاً

With the resurgence of tick-borne diseases such as Lyme disease and the emergence of new pathogens such as Powassan virus, understanding what distinguishes vector from non-vector species, and predicting undiscovered tick vectors is an important step towards mitigating human disease risk. We apply generalized boosted regression to interrogate over 90 features for over 240 species of Ixodes ticks. Our model predicted vector status with ~97% accuracy and implicated 14 tick species whose intrinsic trait profiles confer high probabilities (~80%) that they are capable of transmitting infections from animal hosts to humans. Distinguishing characteristics of zoonotic tick vectors include several anatomical structures that facilitate efficient host seeking and blood-feeding from a wide variety of host species. Boosted regression analysis produced both actionable predictions to guide ongoing surveillance as well as testable hypotheses about the biological underpinnings of vectorial capacity across tick species.
MPAgenomics, standing for multi-patients analysis (MPA) of genomic markers, is an R-package devoted to: (i) efficient segmentation, and (ii) genomic marker selection from multi-patient copy number and SNP data profiles. It provides wrappers from comm only used packages to facilitate their repeated (sometimes difficult) use, offering an easy-to-use pipeline for beginners in R. The segmentation of successive multiple profiles (finding losses and gains) is based on a new automatic choice of influential parameters since default ones were misleading in the original packages. Considering multiple profiles in the same time, MPAgenomics wraps efficient penalized regression methods to select relevant markers associated with a given response.
The study reports the performance of Parkinsons disease (PD) patients to operate Motor-Imagery based Brain-Computer Interface (MI-BCI) and compares three selected pre-processing and classification approaches. The experiment was conducted on 7 PD pati ents who performed a total of 14 MI-BCI sessions targeting lower extremities. EEG was recorded during the initial calibration phase of each session, and the specific BCI models were produced by using Spectrally weighted Common Spatial Patterns (SpecCSP), Source Power Comodulation (SPoC) and Filter-Bank Common Spatial Patterns (FBCSP) methods. The results showed that FBCSP outperformed SPoC in terms of accuracy, and both SPoC and SpecCSP in terms of the false-positive ratio. The study also demonstrates that PD patients were capable of operating MI-BCI, although with lower accuracy.
Motor-Imagery based BCI (MI-BCI) neurorehabilitation can improve locomotor ability and reduce the deficit symptoms in Parkinsons Disease patients. Advanced Motor-Imagery BCI methods are needed to overcome the accuracy and time-related MI BCI calibrat ion challenges in such patients. In this study, we proposed a Multi-session FBCSP (msFBCSP) based on inter-session transfer learning and we investigated its performance compared to the single-session based FBSCP. The main result of this study is the significantly improved accuracy obtained by proposed msFBCSP compared to single-session FBCSP in PD patients (median 81.3%, range 41.2-100.0% vs median 61.1%, range 25.0-100.0%, respectively; p<0.001). In conclusion, this study proposes a transfer learning-based multi-session based FBCSP approach which allowed to significantly improve calibration accuracy in MI BCI performed on PD patients.
One major challenge in the medication of Parkinsons disease is that the severity of the disease, reflected in the patients motor state, cannot be measured using accessible biomarkers. Therefore, we develop and examine a variety of statistical models to detect the motor state of such patients based on sensor data from a wearable device. We find that deep learning models consistently outperform a classical machine learning model applied on hand-crafted features in this time series classification task. Furthermore, our results suggest that treating this problem as a regression instead of an ordinal regression or a classification task is most appropriate. For consistent model evaluation and training, we adopt the leave-one-subject-out validation scheme to the training of deep learning models. We also employ a class-weighting scheme to successfully mitigate the problem of high multi-class imbalances in this domain. In addition, we propose a customized performance measure that reflects the requirements of the involved medical staff on the model. To solve the problem of limited availability of high quality training data, we propose a transfer learning technique which helps to improve model performance substantially. Our results suggest that deep learning techniques offer a high potential to autonomously detect motor states of patients with Parkinsons disease.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا