ﻻ يوجد ملخص باللغة العربية
While the emerging evidence indicates that the pathogenesis of Parkinsons disease (PD) is strongly correlated to the accumulation of alpha-synuclein ({alpha}-syn) aggregates, there has been no clinical success in anti-aggregation agents for the disease to date. Here we show that graphene quantum dots (GQDs) exhibit anti-amyloid activity via direct interaction with {alpha}-syn. Employing biophysical, biochemical, and cell-based assays as well as molecular dynamics (MD) simulation, we find that GQDs have notable potency in not only inhibiting fibrillization of {alpha}-syn but also disaggregating mature fibrils in a time-dependent manner. Remarkably, GQDs rescue neuronal death and synaptic loss, reduce Lewy body (LB)/Lewy neurite (LN) formation, ameliorate mitochondrial dysfunctions, and prevent neuron-to-neuron transmission of {alpha}-syn pathology induced by {alpha}-syn preformed fibrils (PFFs) in neurons. In addition, in vivo administration of GQDs protects against {alpha}-syn PFFs-induced loss of dopamine neurons, LB/LN pathology, and behavioural deficits through the penetration of the blood-brain barrier (BBB). The finding that GQDs function as an anti-aggregation agent provides a promising novel therapeutic target for the treatment of PD and related {alpha}-synucleinopathies.
The loss of melanized neurons in the substantia nigra pars compacta is a primary feature in Parkinsons disease (PD). Iron deposition occurs in conjunction with this loss. Loss of nigral neurons should remove barriers for diffusion and increase diffus
Mobility is severely impacted in patients with Parkinsons disease (PD), especially when they experience involuntary stopping from the freezing of gait (FOG). Understanding the neurophysiological difference between voluntary stopping and involuntary s
Parkinsons disease (PD) is a common neurodegenerative disease with a high degree of heterogeneity in its clinical features, rate of progression, and change of variables over time. In this work, we present a novel data-driven, network-based Trajectory
Alzheimers disease (AD) and Parkinsons disease (PD) are the two most common neurodegenerative disorders in humans. Because a significant percentage of patients have clinical and pathological features of both diseases, it has been hypothesized that th
Berry phase plays an important role in determining many physical properties of quantum systems. However, a Berry phase altering energy spectrum of a quantum system is comparatively rare. Here, we report an unusual tunable valley polarized energy spec