ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting Parkinsons Disease with Multimodal Irregularly Collected Longitudinal Smartphone Data

420   0   0.0 ( 0 )
 نشر من قبل Weijian Li
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Parkinsons Disease is a neurological disorder and prevalent in elderly people. Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests. The high-resolution longitudinal activity data collected by smartphone applications nowadays make it possible to conduct remote and convenient health assessment. However, out-of-lab tests often suffer from poor quality controls as well as irregularly collected observations, leading to noisy test results. To address these issues, we propose a novel time-series based approach to predicting Parkinsons Disease with raw activity test data collected by smartphones in the wild. The proposed method first synchronizes discrete activity tests into multimodal features at unified time points. Next, it distills and enriches local and global representations from noisy data across modalities and temporal observations by two attention modules. With the proposed mechanisms, our model is capable of handling noisy observations and at the same time extracting refined temporal features for improved prediction performance. Quantitative and qualitative results on a large public dataset demonstrate the effectiveness of the proposed approach.



قيم البحث

اقرأ أيضاً

Hospital readmission rate is high for heart failure patients. Early detection of deterioration will help doctors prevent readmissions, thus reducing health care cost and providing patients with just-in-time intervention. Wearable devices (e.g., wrist bands and smart watches) provide a convenient technology for continuous outpatient monitoring. In the paper, we explore the feasibility of monitoring outpatients using Fitbit Charge HR wristbands and the potential of machine learning models to predicting clinical deterioration (readmissions and death) among outpatients discharged from the hospital. We developed and piloted a data collection system in a clinical study which involved 25 heart failure patients recently discharged from a hospital. The results from the clinical study demonstrated the feasibility of continuously monitoring outpatients using wristbands. We observed high levels of patient compliance in wearing the wristbands regularly and satisfactory yield, latency and reliability of data collection from the wristbands to a cloud-based database. Finally, we explored a set of machine learning models to predict deterioration based on the Fitbit data. Through 5-fold cross validation, K nearest neighbor achieved the highest accuracy of 0.8800 for identifying patients at risk of deterioration using the health data from the beginning of the monitoring. Machine learning models based on multimodal data (step, sleep and heart rate) significantly outperformed the traditional clinical approach based on LACE index. Moreover, our proposed weighted samples one class SVM model can reach high accuracy (0.9635) for predicting the deterioration happening in the future using data collected by a sliding window, which indicates the potential for allowing timely intervention.
Alzheimers disease (AD) and Parkinsons disease (PD) are the two most common neurodegenerative disorders in humans. Because a significant percentage of patients have clinical and pathological features of both diseases, it has been hypothesized that th e patho-cascades of the two diseases overlap. Despite this evidence, these two diseases are rarely studied in a joint manner. In this paper, we utilize clinical, imaging, genetic, and biospecimen features to cluster AD and PD patients into the same feature space. By training a machine learning classifier on the combined feature space, we predict the disease stage of patients two years after their baseline visits. We observed a considerable improvement in the prediction accuracy of Parkinsons dementia patients due to combined training on Alzheimers and Parkinsons patients, thereby affirming the claim that these two diseases can be jointly studied.
Analyzing disease progression patterns can provide useful insights into the disease processes of many chronic conditions. These analyses may help inform recruitment for prevention trials or the development and personalization of treatments for those affected. We learn disease progression patterns using Hidden Markov Models (HMM) and distill them into distinct trajectories using visualization methods. We apply it to the domain of Type 1 Diabetes (T1D) using large longitudinal observational data from the T1DI study group. Our method discovers distinct disease progression trajectories that corroborate with recently published findings. In this paper, we describe the iterative process of developing the model. These methods may also be applied to other chronic conditions that evolve over time.
Parkinsons disease (PD) is a common neurodegenerative disease with a high degree of heterogeneity in its clinical features, rate of progression, and change of variables over time. In this work, we present a novel data-driven, network-based Trajectory Profile Clustering (TPC) algorithm for 1) identification of PD subtypes and 2) early prediction of disease progression in individual patients. Our subtype identification is based not only on PD variables, but also on their complex patterns of progression, providing a useful tool for the analysis of large heterogenous, longitudinal data. Specifically, we cluster patients based on the similarity of their trajectories through a time series of bipartite networks connecting patients to demographic, clinical, and genetic variables. We apply this approach to demographic and clinical data from the Parkinsons Progression Markers Initiative (PPMI) dataset and identify 3 patient clusters, consistent with 3 distinct PD subtypes, each with a characteristic variable progression profile. Additionally, TPC predicts an individual patients subtype and future disease trajectory, based on baseline assessments. Application of our approach resulted in 74% accurate subtype prediction in year 5 in a test/validation cohort. Furthermore, we show that genetic variability can be integrated seamlessly in our TPC approach. In summary, using PD as a model for chronic progressive diseases, we show that TPC leverages high-dimensional longitudinal datasets for subtype identification and early prediction of individual disease subtype. We anticipate this approach will be broadly applicable to multidimensional longitudinal datasets in diverse chronic diseases.
One major challenge in the medication of Parkinsons disease is that the severity of the disease, reflected in the patients motor state, cannot be measured using accessible biomarkers. Therefore, we develop and examine a variety of statistical models to detect the motor state of such patients based on sensor data from a wearable device. We find that deep learning models consistently outperform a classical machine learning model applied on hand-crafted features in this time series classification task. Furthermore, our results suggest that treating this problem as a regression instead of an ordinal regression or a classification task is most appropriate. For consistent model evaluation and training, we adopt the leave-one-subject-out validation scheme to the training of deep learning models. We also employ a class-weighting scheme to successfully mitigate the problem of high multi-class imbalances in this domain. In addition, we propose a customized performance measure that reflects the requirements of the involved medical staff on the model. To solve the problem of limited availability of high quality training data, we propose a transfer learning technique which helps to improve model performance substantially. Our results suggest that deep learning techniques offer a high potential to autonomously detect motor states of patients with Parkinsons disease.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا