ﻻ يوجد ملخص باللغة العربية
Recent developments in twisted and lattice-mismatched bilayers have revealed a rich phase space of van der Waals systems and generated excitement. Among these systems are heterobilayers which can offer new opportunities to control van der Waals systems with strong in plane correlations such as spin-orbit-assisted Mott insulator $alpha$-RuCl$_3$. Nevertheless, a theoretical $textit{ab initio}$ framework for mismatched heterobilayers without even approximate periodicity is sorely lacking. We propose a general strategy for calculating electronic properties of such systems, mismatched interface theory (MINT), and apply it to the graphene/$alpha$-RuCl$_{3}$ (GR/$alpha$-RuCl$_{3}$) heterostructure. Using MINT, we predict uniform doping of 4.77$%$ from graphene to $alpha$-RuCl$_3$ and magnetic interactions in $alpha$-RuCl$_3$ to shift the system toward the Kitaev point. Hence we demonstrate that MINT can guide targeted materialization of desired model systems and discuss recent experiments on GR/$alpha$-RuCl$_{3}$ heterostructures.
Raman scattering has been employed to investigate lattice and magnetic excitations of the honeycomb Kitaev material $alpha$-RuCl$_3$ and its Heisenberg counterpart CrCl$_3$. Our phonon Raman spectra give evidence for a first-order structural transiti
Work function-mediated charge transfer in graphene/$alpha$-RuCl$_3$ heterostructures has been proposed as a strategy for generating highly-doped 2D interfaces. In this geometry, graphene should become sufficiently doped to host surface and edge plasm
We investigate, using a first-principles density-functional methodology, the nature of magnetism in monolayer $1T$-phase of tantalum disulfide ($1T$-TaS$_2$ ). Magnetism in the insulating phase of TaS$_2$ is a longstanding puzzle and has led to a var
Thermodynamics of the Kitaev honeycomb magnet $alpha$-RuCl$_3$ is studied for different directions of in-plane magnetic field using measurements of the magnetic Gruneisen parameter $Gamma_B$ and specific heat $C$. We identify two critical fields $B_c
We model changes of magnetic ordering in Mn-antiperovskite nitrides driven by biaxial lattice strain at zero and at finite temperature. We employ a non-collinear spin-polarised density functional theory to compare the response of the geometrically fr