ﻻ يوجد ملخص باللغة العربية
Work function-mediated charge transfer in graphene/$alpha$-RuCl$_3$ heterostructures has been proposed as a strategy for generating highly-doped 2D interfaces. In this geometry, graphene should become sufficiently doped to host surface and edge plasmon-polaritons (SPPs and EPPs, respectively). Characterization of the SPP and EPP behavior as a function of frequency and temperature can be used to simultaneously probe the magnitude of interlayer charge transfer while extracting the optical response of the interfacial doped $alpha$-RuCl$_3$. We accomplish this using scanning near-field optical microscopy (SNOM) in conjunction with first-principles DFT calculations. This reveals massive interlayer charge transfer (2.7 $times$ 10$^{13}$ cm$^{-2}$) and enhanced optical conductivity in $alpha$-RuCl$_3$ as a result of significant electron doping. Our results provide a general strategy for generating highly-doped plasmonic interfaces in the 2D limit in a scanning probe-accessible geometry without need of an electrostatic gate.
Recent developments in twisted and lattice-mismatched bilayers have revealed a rich phase space of van der Waals systems and generated excitement. Among these systems are heterobilayers which can offer new opportunities to control van der Waals syste
We have investigated the illumination effect on the magnetotransport properties of a two-dimensional electron system at the LaAlO$_3$/SrTiO$_3$ interface. The illumination significantly reduces the zero-field sheet resistance, eliminates the Kondo ef
Thin film synthesis methods developed over the past decades have unlocked emergent interface properties ranging from conductivity to ferroelectricity. However, our attempts to exercise precise control over interfaces are constrained by a limited unde
Recent experiments have shown that transition metal oxide heterostructures such as SrTiO$_3$-based interfaces, exhibit large, gate tunable, spintronic responses. Our theoretical study showcases key factors controlling the magnitude of the conversion,
Thermodynamics of the Kitaev honeycomb magnet $alpha$-RuCl$_3$ is studied for different directions of in-plane magnetic field using measurements of the magnetic Gruneisen parameter $Gamma_B$ and specific heat $C$. We identify two critical fields $B_c