ﻻ يوجد ملخص باللغة العربية
We investigate, using a first-principles density-functional methodology, the nature of magnetism in monolayer $1T$-phase of tantalum disulfide ($1T$-TaS$_2$ ). Magnetism in the insulating phase of TaS$_2$ is a longstanding puzzle and has led to a variety of theoretical proposals including notably the realization of a two-dimensional quantum-spin-liquid phase. By means of non-collinear spin calculations, we derive $textit{ab initio}$ spin Hamiltonians including two-spin bilinear Heisenberg exchange, as well as biquadratic and four-spin ring-exchange couplings. We find that both quadratic and quartic interactions are consistently ferromagnetic, for all the functionals considered. Relativistic calculations predict substantial magnetocrystalline anisotropy. Altogether, our results suggest that this material may realize an easy-plane XXZ quantum ferromagnet with large anisotropy.
We propose an insulating 2D phase of IrO$_{2}$, predicted by $textit{ab initio}$ evolutionary algorithms. The predicted phase is a van der Waals crystal, in which Ir forms a triangular lattice, and is energetically competitive with the metastable spi
The ability to tune material properties using gate electric field is at the heart of modern electronic technology. It is also a driving force behind recent advances in two-dimensional systems, such as gate-electric-field induced superconductivity and
Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dyn
Recent developments in twisted and lattice-mismatched bilayers have revealed a rich phase space of van der Waals systems and generated excitement. Among these systems are heterobilayers which can offer new opportunities to control van der Waals syste
This paper has been withdrawn by the author due to a crucial citing error in equation 4.