ترغب بنشر مسار تعليمي؟ اضغط هنا

Relation between Kitaev magnetism and structure in $alpha$-RuCl$_3$

88   0   0.0 ( 0 )
 نشر من قبل Seunghwan Do
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Raman scattering has been employed to investigate lattice and magnetic excitations of the honeycomb Kitaev material $alpha$-RuCl$_3$ and its Heisenberg counterpart CrCl$_3$. Our phonon Raman spectra give evidence for a first-order structural transition from a monoclinic to a rhombohedral structure for both compounds. Significantly, only $alpha$-RuCl$_3$ features a large thermal hysteresis, consistent with the formation of a wide phase of coexistence. In the related temperature interval of $70-170$ K, we observe a hysteretic behavior of magnetic excitations as well. The stronger magnetic response in the rhombohedral compared to the monoclinic phase evidences a coupling between the crystallographic structure and low-energy magnetic response. Our results demonstrate that the Kitaev magnetism concomitant with fractionalized excitations is susceptible to small variations of bonding geometry.



قيم البحث

اقرأ أيضاً

Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4$d$ system $alpha$-RuCl$_3$ has recently come into view as a candidate Kitaev system, with evide nce for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru $d$ states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that $alpha$-RuCl$_3$ is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.
$alpha$-RuCl$_3$ has attracted enormous attention since it has been proposed as a prime candidate to study fractionalized magnetic excitations akin to Kitaevs honeycomb-lattice spin liquid. We have performed a detailed specific-heat investigation at temperatures down to $0.4$ K in applied magnetic fields up to $9$ T for fields parallel to the $ab$ plane. We find a suppression of the zero-field antiferromagnetic order, together with an increase of the low-temperature specific heat, with increasing field up to $mu_0H_capprox 6.9$ T. Above $H_c$, the magnetic contribution to the low-temperature specific heat is strongly suppressed, implying the opening of a spin-excitation gap. Our data point toward a field-induced quantum critical point (QCP) at $H_c$; this is supported by universal scaling behavior near $H_c$. Remarkably, the data also reveal the existence of a small characteristic energy scale well below $1$~meV above which the excitation spectrum changes qualitatively. We relate the data to theoretical calculations based on a $J_1$--$K_1$--$Gamma_1$--$J_3$ honeycomb model.
Recently, $alpha$-$textrm{RuCl}_3$ has attracted much attention as a possible material realization of the honeycomb Kitaev model, which may stabilize a quantum-spin-liquid state. Compared to extensive studies on its magnetic properties, there is stil l a lack of understanding on its electronic structure, which is strongly related with its Kitaev physics. Here, the electronic structure of $alpha$-$textrm{RuCl}_3$ is investigated by photoemission (PE) and inverse photoemission (IPE) spectroscopies. The band gap, directly measured from PE/IPE spectra, is found to be 1.9 eV, much larger than previous estimations. The LDA calculations show that the on-site Coulomb interaction $textit{U}$ can open the band gap without spin-orbit coupling (SOC). However, the SOC should also be incorporated to reproduce the proper gap size, indicating that the interplay between $textit{U}$ and SOC plays an essential role in the physics of $alpha$-$textrm{RuCl}_3$. There exist some spectral features in PE/IPE spectra which cannot be explained by the LDA calculations. To explain such discrepancies, we perform the configuration-interaction calculations for a ${textrm{RuCl}}_6^{3-}$ cluster. The experimental data and calculations demonstrate that the 4$textit{d}$ compound $alpha$-$textrm{RuCl}_3$ is a $J_{textrm{eff}}$ = 1/2 Mott insulator rather than a quasimolecular-orbital insulator. Our study also provides important physical parameters, required in verifying the proposed Kitaev physics in $alpha$-$textrm{RuCl}_3$.
$alpha$-RuCl$_3$ is drawing much attention as a promising candidate Kitaev quantum spin liquid. However, despite intensive research efforts, controversy remains about the form of the basic interactions governing the physics of this material. Even the sign of the Kitaev interaction (the bond-dependent anisotropic interaction responsible for Kitaev physics) is still under debate, with conflicting results from theoretical and experimental studies. The significance of the symmetric off-diagonal exchange interaction (referred to as the $Gamma$ term) is another contentious question. Here, we present resonant elastic x-ray scattering data that provides unambiguous experimental constraints to the two leading terms in the magnetic interaction Hamiltonian. We show that the Kitaev interaction ($K$) is ferromagnetic, and that the $Gamma$ term is antiferromagnetic and comparable in size to the Kitaev interaction. Our findings also provide a natural explanation for the large anisotropy of the magnetic susceptibility in $alpha$-RuCl$_3$ as arising from the large $Gamma$ term. We therefore provide a crucial foundation for understanding the interactions underpinning the exotic magnetic behaviours observed in $alpha$-RuCl$_3$.
The Kitaev quantum spin liquid displays the fractionalization of quantum spins into Majorana fermions. The emergent Majorana edge current is predicted to manifest itself in the form of a finite thermal Hall effect, a feature commonly discussed in top ological superconductors. Here we report on thermal Hall conductivity $kappa_{xy}$ measurements in $alpha$-RuCl$_3$, a candidate Kitaev magnet with the two-dimensional honeycomb lattice. In a spin-liquid (Kitaev paramagnetic) state below the temperature characterized by the Kitaev interaction $J_K/k_B sim 80$ K, positive $kappa_{xy}$ develops gradually upon cooling, demonstrating the presence of highly unusual itinerant excitations. Although the zero-temperature property is masked by the magnetic ordering at $T_N=7$ K, the sign, magnitude, and $T$-dependence of $kappa_{xy}/T$ at intermediate temperatures follows the predicted trend of the itinerant Majorana excitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا