ﻻ يوجد ملخص باللغة العربية
Thermodynamics of the Kitaev honeycomb magnet $alpha$-RuCl$_3$ is studied for different directions of in-plane magnetic field using measurements of the magnetic Gruneisen parameter $Gamma_B$ and specific heat $C$. We identify two critical fields $B_c^{rm AF1}$ and $B_c^{rm AF2}$ corresponding, respectively, to a transition between two magnetically ordered states and the loss of magnetic order toward a quantum paramagnetic state. The $B_c^{AF2}$ phase boundary reveals a narrow region of magnetic fields where inverse melting of the ordered phase may occur. No additional transitions are detected above $B_c^{rm AF2}$ for any direction of the in-plane field, although a shoulder anomaly in $Gamma_B$ is observed systematically at $8-10$ T. Large field-induced entropy effects imply additional low-energy excitations at low fields and/or strongly field-dependent phonon entropies. Our results establish universal features of $alpha$-RuCl$_3$ in high magnetic fields and challenge the presence of a field-induced Kitaev spin liquid in this material.
Measurements of the magnetic Gruneisen parameter ($Gamma_B$) and specific heat on the Kitaev material candidate $alpha$-RuCl$_3$ are used to access in-plane field- and temperature-dependence of the entropy up to 12 T and down to 1 K. No signatures co
An external magnetic field can induce a transition in $alpha$-RuCl$_3$ from an ordered zigzag state to a disordered state that is possibly related to the Kitaev quantum spin liquid. Here we present new field dependent inelastic neutron scattering and
The frustrated magnet $alpha$-RuCl$_3$ constitutes a fascinating quantum material platform that harbors the intriguing Kitaev physics. However, a consensus on its intricate spin interactions and field-induced quantum phases has not been reached yet.
We study on transport and magnetic properties of hydrated and lithium-intercalated $alpha$-RuCl$_3$, Li$_x$RuCl$_3 cdot y$H$_2$O, for investigating the effect on mobile-carrier doping into candidate materials for a realization of a Kitaev model. From
We perform Raman spectroscopy studies on $alpha$-RuCl$_3$ at room temperature to explore its phase transitions of magnetism and chemical bonding under pressures. The Raman measurements resolve two critical pressures, about $p_1=1.1$~GPa and $p_2=1.7$