ترغب بنشر مسار تعليمي؟ اضغط هنا

Uniform regret bounds over $R^d$ for the sequential linear regression problem with the square loss

288   0   0.0 ( 0 )
 نشر من قبل Gilles Stoltz
 تاريخ النشر 2018
والبحث باللغة English
 تأليف Pierre Gaillard




اسأل ChatGPT حول البحث

We consider the setting of online linear regression for arbitrary deterministic sequences, with the square loss. We are interested in the aim set by Bartlett et al. (2015): obtain regret bounds that hold uniformly over all competitor vectors. When the feature sequence is known at the beginning of the game, they provided closed-form regret bounds of $2d B^2 ln T + mathcal{O}_T(1)$, where $T$ is the number of rounds and $B$ is a bound on the observations. Instead, we derive bounds with an optimal constant of $1$ in front of the $d B^2 ln T$ term. In the case of sequentially revealed features, we also derive an asymptotic regret bound of $d B^2 ln T$ for any individual sequence of features and bounded observations. All our algorithms are variants of the online non-linear ridge regression forecaster, either with a data-dependent regularization or with almost no regularization.



قيم البحث

اقرأ أيضاً

The contextual combinatorial semi-bandit problem with linear payoff functions is a decision-making problem in which a learner chooses a set of arms with the feature vectors in each round under given constraints so as to maximize the sum of rewards of arms. Several existing algorithms have regret bounds that are optimal with respect to the number of rounds $T$. However, there is a gap of $tilde{O}(max(sqrt{d}, sqrt{k}))$ between the current best upper and lower bounds, where $d$ is the dimension of the feature vectors, $k$ is the number of the chosen arms in a round, and $tilde{O}(cdot)$ ignores the logarithmic factors. The dependence of $k$ and $d$ is of practical importance because $k$ may be larger than $T$ in real-world applications such as recommender systems. In this paper, we fill the gap by improving the upper and lower bounds. More precisely, we show that the C${}^2$UCB algorithm proposed by Qin, Chen, and Zhu (2014) has the optimal regret bound $tilde{O}(dsqrt{kT} + dk)$ for the partition matroid constraints. For general constraints, we propose an algorithm that modifies the reward estimates of arms in the C${}^2$UCB algorithm and demonstrate that it enjoys the optimal regret bound for a more general problem that can take into account other objectives simultaneously. We also show that our technique would be applicable to related problems. Numerical experiments support our theoretical results and considerations.
We consider interpolation learning in high-dimensional linear regression with Gaussian data, and prove a generic uniform convergence guarantee on the generalization error of interpolators in an arbitrary hypothesis class in terms of the classs Gaussi an width. Applying the generic bound to Euclidean norm balls recovers the consistency result of Bartlett et al. (2020) for minimum-norm interpolators, and confirms a prediction of Zhou et al. (2020) for near-minimal-norm interpolators in the special case of Gaussian data. We demonstrate the generality of the bound by applying it to the simplex, obtaining a novel consistency result for minimum l1-norm interpolators (basis pursuit). Our results show how norm-based generalization bounds can explain and be used to analyze benign overfitting, at least in some settings.
In the context of K-armed stochastic bandits with distribution only assumed to be supported by [0,1], we introduce the first algorithm, called KL-UCB-switch, that enjoys simultaneously a distribution-free regret bound of optimal order $sqrt{KT}$ and a distribution-dependent regret bound of optimal order as well, that is, matching the $kappaln T$ lower bound by Lai & Robbins (1985) and Burnetas & Katehakis (1996). This self-contained contribution simultaneously presents state-of-the-art techniques for regret minimization in bandit models, and an elementary construction of non-asymptotic confidence bounds based on the empirical likelihood method for bounded distributions.
Over-parameterization and adaptive methods have played a crucial role in the success of deep learning in the last decade. The widespread use of over-parameterization has forced us to rethink generalization by bringing forth new phenomena, such as imp licit regularization of optimization algorithms and double descent with training progression. A series of recent works have started to shed light on these areas in the quest to understand -- why do neural networks generalize well? The setting of over-parameterized linear regression has provided key insights into understanding this mysterious behavior of neural networks. In this paper, we aim to characterize the performance of adaptive methods in the over-parameterized linear regression setting. First, we focus on two sub-classes of adaptive methods depending on their generalization performance. For the first class of adaptive methods, the parameter vector remains in the span of the data and converges to the minimum norm solution like gradient descent (GD). On the other hand, for the second class of adaptive methods, the gradient rotation caused by the pre-conditioner matrix results in an in-span component of the parameter vector that converges to the minimum norm solution and the out-of-span component that saturates. Our experiments on over-parameterized linear regression and deep neural networks support this theory.
This article investigates the quality of the estimator of the linear Monge mapping between distributions. We provide the first concentration result on the linear mapping operator and prove a sample complexity of $n^{-1/2}$ when using empirical estima tes of first and second order moments. This result is then used to derive a generalization bound for domain adaptation with optimal transport. As a consequence, this method approaches the performance of theoretical Bayes predictor under mild conditions on the covariance structure of the problem. We also discuss the computational complexity of the linear mapping estimation and show that when the source and target are stationary the mapping is a convolution that can be estimated very efficiently using fast Fourier transforms. Numerical experiments reproduce the behavior of the proven bounds on simulated and real data for mapping estimation and domain adaptation on images.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا