ﻻ يوجد ملخص باللغة العربية
We consider the setting of online linear regression for arbitrary deterministic sequences, with the square loss. We are interested in the aim set by Bartlett et al. (2015): obtain regret bounds that hold uniformly over all competitor vectors. When the feature sequence is known at the beginning of the game, they provided closed-form regret bounds of $2d B^2 ln T + mathcal{O}_T(1)$, where $T$ is the number of rounds and $B$ is a bound on the observations. Instead, we derive bounds with an optimal constant of $1$ in front of the $d B^2 ln T$ term. In the case of sequentially revealed features, we also derive an asymptotic regret bound of $d B^2 ln T$ for any individual sequence of features and bounded observations. All our algorithms are variants of the online non-linear ridge regression forecaster, either with a data-dependent regularization or with almost no regularization.
The contextual combinatorial semi-bandit problem with linear payoff functions is a decision-making problem in which a learner chooses a set of arms with the feature vectors in each round under given constraints so as to maximize the sum of rewards of
We consider interpolation learning in high-dimensional linear regression with Gaussian data, and prove a generic uniform convergence guarantee on the generalization error of interpolators in an arbitrary hypothesis class in terms of the classs Gaussi
In the context of K-armed stochastic bandits with distribution only assumed to be supported by [0,1], we introduce the first algorithm, called KL-UCB-switch, that enjoys simultaneously a distribution-free regret bound of optimal order $sqrt{KT}$ and
Over-parameterization and adaptive methods have played a crucial role in the success of deep learning in the last decade. The widespread use of over-parameterization has forced us to rethink generalization by bringing forth new phenomena, such as imp
This article investigates the quality of the estimator of the linear Monge mapping between distributions. We provide the first concentration result on the linear mapping operator and prove a sample complexity of $n^{-1/2}$ when using empirical estima