ﻻ يوجد ملخص باللغة العربية
In this paper, we present a robust multipath-based localization and mapping framework that exploits the phases of specular multipath components (MPCs) using a massive multiple-input multiple-output (MIMO) array at the base station. Utilizing the phase information related to the propagation distances of the MPCs enables the possibility of localization with extraordinary accuracy even with limited bandwidth. The specular MPC parameters along with the parameters of the noise and the dense multipath component (DMC) are tracked using an extended Kalman filter (EKF), which enables to preserve the distance-related phase changes of the MPC complex amplitudes. The DMC comprises all non-resolvable MPCs, which occur due to finite measurement aperture. The estimation of the DMC parameters enhances the estimation quality of the specular MPCs and therefore also the quality of localization and mapping. The estimated MPC propagation distances are subsequently used as input to a distance-based localization and mapping algorithm. This algorithm does not need prior knowledge about the surrounding environment and base station position. The performance is demonstrated with real radio-channel measurements using an antenna array with 128 ports at the base station side and a standard cellular signal bandwidth of 40 MHz. The results show that high accuracy localization is possible even with such a low bandwidth.
Large-scale MIMO systems are well known for their advantages in communications, but they also have the potential for providing very accurate localization thanks to their high angular resolution. A difficult problem arising indoors and outdoors is loc
Localization of radio frequency sources over multipath channels is a difficult problem arising in applications such as outdoor or indoor gelocation. Common approaches that combine ad-hoc methods for multipath mitigation with indirect localization rel
This paper investigates the problem of estimating sparse channels in massive MIMO systems. Most wireless channels are sparse with large delay spread, while some channels can be observed having sparse common support (SCS) within a certain area of the
Benefiting from tens of GHz bandwidth, terahertz (THz) communication is considered to be a promising technology to provide ultra-high speed data rates for future 6G wireless systems. To compensate for the serious propagation attenuation of THz signal
This paper presents an analysis of target localization accuracy, attainable by the use of MIMO (Multiple-Input Multiple-Output) radar systems, configured with multiple transmit and receive sensors, widely distributed over a given area. The Cramer-Rao