ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Localization for Massive MIMO

72   0   0.0 ( 0 )
 نشر من قبل Nil Garcia
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Large-scale MIMO systems are well known for their advantages in communications, but they also have the potential for providing very accurate localization thanks to their high angular resolution. A difficult problem arising indoors and outdoors is localizing users over multipath channels. Localization based on angle of arrival (AOA) generally involves a two-step procedure, where signals are first processed to obtain a users AOA at different base stations, followed by triangulation to determine the users position. In the presence of multipath, the performance of these methods is greatly degraded due to the inability to correctly detect and/or estimate the AOA of the line-of-sight (LOS) paths. To counter the limitations of this two-step procedure which is inherently sub-optimal, we propose a direct localization approach in which the position of a user is localized by jointly processing the observations obtained at distributed massive MIMO base stations. Our approach is based on a novel compressed sensing framework that exploits channel properties to distinguish LOS from non-LOS signal paths, and leads to improved performance results compared to previous existing methods.



قيم البحث

اقرأ أيضاً

In this paper, we present a robust multipath-based localization and mapping framework that exploits the phases of specular multipath components (MPCs) using a massive multiple-input multiple-output (MIMO) array at the base station. Utilizing the phas e information related to the propagation distances of the MPCs enables the possibility of localization with extraordinary accuracy even with limited bandwidth. The specular MPC parameters along with the parameters of the noise and the dense multipath component (DMC) are tracked using an extended Kalman filter (EKF), which enables to preserve the distance-related phase changes of the MPC complex amplitudes. The DMC comprises all non-resolvable MPCs, which occur due to finite measurement aperture. The estimation of the DMC parameters enhances the estimation quality of the specular MPCs and therefore also the quality of localization and mapping. The estimated MPC propagation distances are subsequently used as input to a distance-based localization and mapping algorithm. This algorithm does not need prior knowledge about the surrounding environment and base station position. The performance is demonstrated with real radio-channel measurements using an antenna array with 128 ports at the base station side and a standard cellular signal bandwidth of 40 MHz. The results show that high accuracy localization is possible even with such a low bandwidth.
We propose a novel pilot structure for covariance matrix estimation in massive multiple-input multiple-output (MIMO) systems in which each user transmits two pilot sequences, with the second pilot sequence multiplied by a random phase-shift. The cova riance matrix of a particular user is obtained by computing the sample cross-correlation of the channel estimates obtained from the two pilot sequences. This approach relaxes the requirement that all the users transmit their uplink pilots over the same set of symbols. We derive expressions for the achievable rate and the mean-squared error of the covariance matrix estimate when the proposed method is used with staggered pilots. The performance of the proposed method is compared with existing methods through simulations.
In this paper, we consider the downlink of a massive multiple-input-multiple-output (MIMO) single user transmission system operating in the millimeter wave outdoor narrowband channel environment. We propose a novel receive spatial modulation architec ture aimed to reduce the power consumption at the user terminal, while attaining a significant throughput. The energy consumption reduction is obtained through the use of analog devices (amplitude detector), which reduces the number of radio frequency chains and analog-to-digital-converters (ADCs). The base station transmits spatial and modulation symbols per channel use. We show that the optimal spatial symbol detector is a threshold detector that can be implemented by using one bit ADC. We derive closed form expressions for the detection threshold at different signal-to-noise-ratio (SNR) regions showing that a simple threshold can be obtained at high SNR and its performance approaches the exact threshold. We derive expressions for the average bit error probability in the presence and absence of the threshold estimation error showing that a small number of pilot symbols is needed. A performance comparison is done between the proposed system and fully digital MIMO showing that a suitable constellation selection can reduce the performance gap.
The problem of wideband massive MIMO channel estimation is considered. Targeting for low complexity algorithms as well as small training overhead, a compressive sensing (CS) approach is pursued. Unfortunately, due to the Kronecker-type sensing (measu rement) matrix corresponding to this setup, application of standard CS algorithms and analysis methodology does not apply. By recognizing that the channel possesses a special structure, termed hierarchical sparsity, we propose an efficient algorithm that explicitly takes into account this property. In addition, by extending the standard CS analysis methodology to hierarchical sparse vectors, we provide a rigorous analysis of the algorithm performance in terms of estimation error as well as number of pilot subcarriers required to achieve it. Small training overhead, in turn, means higher number of supported users in a cell and potentially improved pilot decontamination. We believe, that this is the first paper that draws a rigorous connection between the hierarchical framework and Kronecker measurements. Numerical results verify the advantage of employing the proposed approach in this setting instead of standard CS algorithms.
We investigate the optimality and power allocation algorithm of beam domain transmission for single-cell massive multiple-input multiple-output (MIMO) systems with a multi-antenna passive eavesdropper. Focusing on the secure massive MIMO downlink tra nsmission with only statistical channel state information of legitimate users and the eavesdropper at base station, we introduce a lower bound on the achievable ergodic secrecy sum-rate, from which we derive the condition for eigenvectors of the optimal input covariance matrices. The result shows that beam domain transmission can achieve optimal performance in terms of secrecy sum-rate lower bound maximization. For the case of single-antenna legitimate users, we prove that it is optimal to allocate no power to the beams where the beam gains of the eavesdropper are stronger than those of legitimate users in order to maximize the secrecy sum-rate lower bound. Then, motivated by the concave-convex procedure and the large dimension random matrix theory, we develop an efficient iterative and convergent algorithm to optimize power allocation in the beam domain. Numerical simulations demonstrate the tightness of the secrecy sum-rate lower bound and the near-optimal performance of the proposed iterative algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا