ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-Complexity Message Passing Based Massive MIMO Channel Estimation by Exploiting Unknown Sparse Common Support with Dirichlet Process

73   0   0.0 ( 0 )
 نشر من قبل Zhengdao Yuan
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper investigates the problem of estimating sparse channels in massive MIMO systems. Most wireless channels are sparse with large delay spread, while some channels can be observed having sparse common support (SCS) within a certain area of the antenna array, i.e., the antenna array can be grouped into several clusters according to the sparse supports of channels. The SCS property is attractive when it comes to the estimation of large number of channels in massive MIMO systems. Using the SCS of channels, one expects better performance, but the number of clusters and the elements for each cluster are always unknown in the receiver. In this paper, {the Dirichlet process} is exploited to model such sparse channels where those in each cluster have SCS. We proposed a low complexity message passing based sparse Bayesian learning to perform channel estimation in massive MIMO systems by using combined BP with MF on a factor graph. Simulation results demonstrate that the proposed massive MIMO sparse channel estimation outperforms the state-of-the-art algorithms. Especially, it even shows better performance than the variational Bayesian method applied for massive MIMO channel estimation.



قيم البحث

اقرأ أيضاً

In this paper, we address the message-passing receiver design for the 3D massive MIMO-OFDM systems. With the aid of the central limit argument and Taylor-series approximation, a computationally efficient receiver that performs joint channel estimatio n and decoding is devised by the framework of expectation propagation. Specially, the local belief defined at the channel transition function is expanded up to the second order with Wirtinger calculus, to transform the messages sent by the channel transition function to a tractable form. As a result, the channel impulse response (CIR) between each pair of antennas is estimated by Gaussian message passing. In addition, a variational expectation-maximization (EM)-based method is derived to learn the channel power-delay-profile (PDP). The proposed joint algorithm is assessed in 3D massive MIMO systems with spatially correlated channels, and the empirical results corroborate its superiority in terms of performance and complexity.
The problem of wideband massive MIMO channel estimation is considered. Targeting for low complexity algorithms as well as small training overhead, a compressive sensing (CS) approach is pursued. Unfortunately, due to the Kronecker-type sensing (measu rement) matrix corresponding to this setup, application of standard CS algorithms and analysis methodology does not apply. By recognizing that the channel possesses a special structure, termed hierarchical sparsity, we propose an efficient algorithm that explicitly takes into account this property. In addition, by extending the standard CS analysis methodology to hierarchical sparse vectors, we provide a rigorous analysis of the algorithm performance in terms of estimation error as well as number of pilot subcarriers required to achieve it. Small training overhead, in turn, means higher number of supported users in a cell and potentially improved pilot decontamination. We believe, that this is the first paper that draws a rigorous connection between the hierarchical framework and Kronecker measurements. Numerical results verify the advantage of employing the proposed approach in this setting instead of standard CS algorithms.
80 - Zhaoji Zhang , Ying Li , Lei Liu 2017
Due to the massive number of devices in the M2M communication era, new challenges have been brought to the existing random-access (RA) mechanism, such as severe preamble collisions and resource block (RB) wastes. To address these problems, a novel sp arse message passing (SMP) algorithm is proposed, based on a factor graph on which Bernoulli messages are updated. The SMP enables an accurate estimation on the activity of the devices and the identity of the preamble chosen by each active device. Aided by the estimation, the RB efficiency for the uplink data transmission can be improved, especially among the collided devices. In addition, an analytical tool is derived to analyze the iterative evolution and convergence of the SMP algorithm. Finally, numerical simulations are provided to verify the validity of our analytical results and the significant improvement of the proposed SMP on estimation error rate even when preamble collision occurs.
124 - Pengxia Wu , Julian Cheng 2021
Novel sparse reconstruction algorithms are proposed for beamspace channel estimation in massive multiple-input multiple-output systems. The proposed algorithms minimize a least-squares objective having a nonconvex regularizer. This regularizer remove s the penalties on a few large-magnitude elements from the conventional l1-norm regularizer, and thus it only forces penalties on the remaining elements that are expected to be zeros. Accurate and fast reconstructions can be achieved by performing gradient projection updates within the framework of difference of convex functions (DC) programming. A double-loop algorithm and a single-loop algorithm are proposed via different DC decompositions, and these two algorithms have distinct computation complexities and convergence rates. Then, an extension algorithm is further proposed by designing the step sizes of the single-loop algorithm. The extension algorithm has a faster convergence rate and can achieve approximately the same level of accuracy as the proposed double-loop algorithm. Numerical results show significant advantages of the proposed algorithms over existing reconstruction algorithms in terms of reconstruction accuracies and runtimes. Compared to the benchmark channel estimation techniques, the proposed algorithms also achieve smaller mean squared error and higher achievable spectral efficiency.
The orthogonal time frequency space (OTFS) modulation has emerged as a promising modulation scheme for high mobility wireless communications. To enable efficient OTFS detection in the delay-Doppler (DD) domain, the DD domain channels need to be acqui red accurately. To achieve the low latency requirement in future wireless communications, the time duration of the OTFS block should be small, therefore fractional Doppler shifts have to be considered to avoid significant modelling errors due to the assumption of integer Doppler shifts. However, there lack investigations on the estimation of OTFS channels with fractional Doppler shifts in the literature. In this work, we develop a high performing channel estimator for OTFS with the bi-orthogonal waveform or the rectangular waveform. Instead of estimating the DD domain channel directly, we estimate the channel gains and (fractional) Doppler shifts that parameterize the DD domain channel. The estimation is formulated as a structured signal recovery problem with a Bayesian treatment. Based on a factor graph representation of the problem, an efficient message passing algorithm is developed to recover the structured sparse signal (thereby the OTFS channel). The Cramer-Rao Lower Bound (CRLB) for the estimation is developed and the effectiveness of the algorithm is demonstrated through simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا