ﻻ يوجد ملخص باللغة العربية
We explore the behaviour of chaotic oscillators in hierarchical networks coupled to an external chaotic system whose intrinsic dynamics is dissimilar to the other oscillators in the network. Specifically, each oscillator couples to the mean-field of the oscillators below it in the hierarchy, and couples diffusively to the oscillator above it in the hierarchy. We find that coupling to one dissimilar external system manages to suppress the chaotic dynamics of all the oscillators in the network at sufficiently high coupling strength. This holds true irrespective of whether the connection to the external system is direct or indirect through oscillators at another level in the hierarchy. Investigating the synchronization properties show that the oscillators have the same steady state at a particular level of hierarchy, whereas the steady state varies across different hierarchical levels. We quantify the efficacy of control by estimating the fraction of random initial states that go to fixed points, a measure analogous to basin stability. These quantitative results indicate the easy controllability of hierarchical networks of chaotic oscillators by an external chaotic system, thereby suggesting a potent method that may help design control strategies.
We study the quantum probability to survive in an open chaotic system in the framework of the van Vleck-Gutzwiller propagator and present the first such calculation that accounts for quantum interference effects. Specifically we calculate quantum dev
Networks of nonlinear units with time-delayed couplings can synchronize to a common chaotic trajectory. Although the delay time may be very large, the units can synchronize completely without time shift. For networks of coupled Bernoulli maps, analyt
We investigate the collective dynamics of chaotic multi-stable Duffing oscillators connected in different network topologies, ranging from star and ring networks, to scale-free networks. We estimate the resilience of such networks by introducing a va
A common external forcing can cause a saddle-node bifurcation in an ensemble of identical Duffing oscillators by breaking the symmetry of the individual bistable (double-well) unit. The strength of the forcing determines the separation between the sa
We report a new accelerated diffusion phenomenon that is produced by a one-dimensional ran- dom walk in which the flight probability to one of the two directions (i.e., bias) oscillates dynam- ically in periodic, quasiperiodic, and chaotic manners. T