ترغب بنشر مسار تعليمي؟ اضغط هنا

Synchronization of chaotic networks with time-delayed couplings: An analytic study

109   0   0.0 ( 0 )
 نشر من قبل Sven Heiligenthal
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Networks of nonlinear units with time-delayed couplings can synchronize to a common chaotic trajectory. Although the delay time may be very large, the units can synchronize completely without time shift. For networks of coupled Bernoulli maps, analytic results are derived for the stability of the chaotic synchronization manifold. For a single delay time, chaos synchronization is related to the spectral gap of the coupling matrix. For networks with multiple delay times, analytic results are obtained from the theory of polynomials. Finally, the analytic results are compared with networks of iterated tent maps and Lang-Kobayashi equations which imitate the behaviour of networks of semiconductor lasers.



قيم البحث

اقرأ أيضاً

Synchronization of chaotic units coupled by their time delayed variables are investigated analytically. A new type of cooperative behavior is found: sublattice synchronization. Although the units of one sublattice are not directly coupled to each oth er, they completely synchronize without time delay. The chaotic trajectories of different sublattices are only weakly correlated but not related by generalized synchronization. Nevertheless, the trajectory of one sublattice is predictable from the complete trajectory of the other one. The spectra of Lyapunov exponents are calculated analytically in the limit of infinite delay times, and phase diagrams are derived for different topologies.
The attractor dimension at the transition to complete synchronization in a network of chaotic units with time-delayed couplings is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterat ed maps and for two coupled semiconductor lasers. We argue that the Kaplan-Yorke dimension must be discontinuous at the transition and compare it to the correlation dimension. For a system of Bernoulli maps we indeed find a jump in the correlation dimension. The magnitude of the discontinuity in the Kaplan-Yorke dimension is calculated for networks of Bernoulli units as a function of the network size. Furthermore the scaling of the Kaplan-Yorke dimension as well as of the Kolmogorov entropy with system size and time delay is investigated.
Networks of chaotic units with static couplings can synchronize to a common chaotic trajectory. The effect of dynamic adaptive couplings on the cooperative behavior of chaotic networks is investigated. The couplings adjust to the activities of its tw o units by two competing mechanisms: An exponential decrease of the coupling strength is compensated by an increase due to de-synchronized activity. This mechanism prevents the network from reaching a steady state. Numerical simulations of a coupled map lattice show chaotic trajectories of de-synchronized units interrupted by pulses of mutually synchronized clusters. These pulses occur on all scales, sometimes extending to the entire network. Clusters of synchronized units can be triggered by a small group of synchronized units.
We study the synchronization of chaotic units connected through time-delayed fluctuating interactions. We focus on small-world networks of Bernoulli and Logistic units with a fixed chiral backbone. Comparing the synchronization properties of static a nd fluctuating networks, we find that random network alternations can enhance the synchronizability. Synchronized states appear to be maximally stable when fluctuations are much faster than the time-delay, even when the instantaneous state of the network does not allow synchronization. This enhancing effect disappears for very slow fluctuations. For fluctuation time scales of the order of the time-delay, a desynchronizing resonance is reported. Moreover, we observe characteristic oscillations, with a periodicity related to the coupling delay, as the system approaches or drifts away from the synchronized state.
We study chaotic systems with multiple time delays that range over several orders of magnitude. We show that the spectrum of Lyapunov exponents (LE) in such systems possesses a hierarchical structure, with different parts scaling with the different d elays. This leads to different types of chaos, depending on the scaling of the maximal LE. Our results are relevant, in particular, for the synchronization properties of hierarchical networks (networks of networks) where the nodes of subnetworks are coupled with shorter delays and couplings between different subnetworks are realized with longer delay times. Units within a subnetwork can synchronize if the maximal exponent scales with the shorter delay, long range synchronization between different subnetworks is only possible if the maximal exponent scales with the long delay. The results are illustrated analytically for Bernoulli maps and numerically for tent maps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا