ﻻ يوجد ملخص باللغة العربية
Networks of nonlinear units with time-delayed couplings can synchronize to a common chaotic trajectory. Although the delay time may be very large, the units can synchronize completely without time shift. For networks of coupled Bernoulli maps, analytic results are derived for the stability of the chaotic synchronization manifold. For a single delay time, chaos synchronization is related to the spectral gap of the coupling matrix. For networks with multiple delay times, analytic results are obtained from the theory of polynomials. Finally, the analytic results are compared with networks of iterated tent maps and Lang-Kobayashi equations which imitate the behaviour of networks of semiconductor lasers.
Synchronization of chaotic units coupled by their time delayed variables are investigated analytically. A new type of cooperative behavior is found: sublattice synchronization. Although the units of one sublattice are not directly coupled to each oth
The attractor dimension at the transition to complete synchronization in a network of chaotic units with time-delayed couplings is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterat
Networks of chaotic units with static couplings can synchronize to a common chaotic trajectory. The effect of dynamic adaptive couplings on the cooperative behavior of chaotic networks is investigated. The couplings adjust to the activities of its tw
We study the synchronization of chaotic units connected through time-delayed fluctuating interactions. We focus on small-world networks of Bernoulli and Logistic units with a fixed chiral backbone. Comparing the synchronization properties of static a
We study chaotic systems with multiple time delays that range over several orders of magnitude. We show that the spectrum of Lyapunov exponents (LE) in such systems possesses a hierarchical structure, with different parts scaling with the different d