ﻻ يوجد ملخص باللغة العربية
We investigate the collective dynamics of chaotic multi-stable Duffing oscillators connected in different network topologies, ranging from star and ring networks, to scale-free networks. We estimate the resilience of such networks by introducing a variant of the concept of multi-node Basin Stability, which allows us to gauge the global stability of the collective dynamics of the network in response to large perturbations localized on certain nodes. We observe that in a star network, perturbing just the hub node has the capacity to destroy the collective state of the entire system. On the other hand, even when a majority of the peripheral nodes are strongly perturbed, the hub manages to restore the system to its original state. This demonstrates the drastic effect of the centrality of the perturbed node on the collective dynamics of the full network. Further, we explore scale-free networks of such multi-stable oscillators and demonstrate that targetted attacks on nodes with high centrality can destroy the collective dynamics much more efficiently than random attacks, irrespective of the nature of the nodal dynamics and type of perturbation. We also find clear evidence that the betweeness centrality of the perturbed node is most crucial for dynamical robustness, with the entire system being more vulnerable to attacks on nodes with high betweeness. These results are crucial for deciding which nodes to stringently safeguard in order to ensure the recovery of the network after targetted localized attacks.
We explore the behaviour of chaotic oscillators in hierarchical networks coupled to an external chaotic system whose intrinsic dynamics is dissimilar to the other oscillators in the network. Specifically, each oscillator couples to the mean-field of
We present a semiclassical calculation of the generalized form factor which characterizes the fluctuations of matrix elements of the quantum operators in the eigenbasis of the Hamiltonian of a chaotic system. Our approach is based on some recently de
We study the synchronization of chaotic units connected through time-delayed fluctuating interactions. We focus on small-world networks of Bernoulli and Logistic units with a fixed chiral backbone. Comparing the synchronization properties of static a
The resilience of cyberphysical systems to denial-of-service (DoS) and integrity attacks is studied in this paper. The cyberphysical system is modeled as a linear structured system, and its resilience to an attack is interpreted in a graph theoretica
We investigate the collective dynamics of bi-stable elements connected in different network topologies, ranging from rings and small-world networks, to scale-free networks and stars. We estimate the dynamical robustness of such networks by introducin