We study the quantum probability to survive in an open chaotic system in the framework of the van Vleck-Gutzwiller propagator and present the first such calculation that accounts for quantum interference effects. Specifically we calculate quantum deviations from the classical decay after the break time for both broken and preserved time-reversal symmetry. The source of these corrections is identified in interfering pairs of correlated classical trajectories. In our approach the quantized chaotic system is modelled by a quatum graph.
Despite considerable progress during the last decades in devising a semiclassical theory for classically chaotic quantum systems a quantitative semiclassical understanding of their dynamics at late times (beyond the so-called Heisenberg time $T_H$) i
s still missing. This challenge, corresponding to resolving spectral structures on energy scales below the mean level spacing, is intimately related to the quest for semiclassically restoring quantum unitarity, which is reflected in real-valued spectral determinants. Guided through insights for quantum graphs we devise a periodic-orbit resummation procedure for quantum chaotic systems invoking periodic-orbit self encounters as the structuring element of a hierarchical phase space dynamics. We propose a way to purely semiclassically construct real spectral determinants based on two major underlying mechanisms: (i) Complementary contributions to the spectral determinant from regrouped pseudo orbits of duration $T < T_H$ and $T_H-T$ are complex conjugate to each other. (ii) Contributions from long periodic orbits involving multiple traversals along shorter orbits cancel out. We furthermore discuss implications for interacting $N$-particle quantum systems with a chaotic classical large-$N$ limit that have recently attracted interest in the context of many-body quantum chaos.
We explore the behaviour of chaotic oscillators in hierarchical networks coupled to an external chaotic system whose intrinsic dynamics is dissimilar to the other oscillators in the network. Specifically, each oscillator couples to the mean-field of
the oscillators below it in the hierarchy, and couples diffusively to the oscillator above it in the hierarchy. We find that coupling to one dissimilar external system manages to suppress the chaotic dynamics of all the oscillators in the network at sufficiently high coupling strength. This holds true irrespective of whether the connection to the external system is direct or indirect through oscillators at another level in the hierarchy. Investigating the synchronization properties show that the oscillators have the same steady state at a particular level of hierarchy, whereas the steady state varies across different hierarchical levels. We quantify the efficacy of control by estimating the fraction of random initial states that go to fixed points, a measure analogous to basin stability. These quantitative results indicate the easy controllability of hierarchical networks of chaotic oscillators by an external chaotic system, thereby suggesting a potent method that may help design control strategies.
We study the effects of finite-sizeness on small, neutrally buoyant, spherical particles advected by open chaotic flows. We show that, when projected onto configuration space, the advected finite-size particles disperse about the unstable manifold of
the chaotic saddle that governs the passive advection. Using a discrete-time system for the dynamics, we obtain an expression predicting the dispersion of the finite-size particles in terms of their Stokes parameter at the onset of the finite-sizeness induced dispersion. We test our theory in a system derived from a flow and find remarkable agreement between our expression and the numerically measured dispersion.
We explain in detail the definition, construction and generalisation of the Galois group of Chebyshev polynomials of high degree to the Galois group of chaotic chains. The calculations in this paper are performed for Chebyshev polynomials and chaotic
chains of degree $N=2$. Insides into possible further steps are given.
Many important high-dimensional dynamical systems exhibit complex chaotic behaviour. Their complexity means that their dynamics are necessarily comprehended under strong reducing assumptions. It is therefore important to have a clear picture of these
reducing assumptions range of validity. The highly influential chaotic hypothesis of Gallavotti and Cohen states that the large-scale dynamics of high-dimensional systems are effectively hyperbolic, which implies many felicitous statistical properties. We demonstrate, contrary to the chaotic hypothesis, the existence of non-hyperbolic large-scale dynamics in a mean-field coupled system. To do this we reduce the system to its thermodynamic limit, which we approximate numerically with a Chebyshev Galerkin transfer operator discretisation. This enables us to obtain a high precision estimate of a homoclinic tangency, implying a failure of hyperbolicity. Robust non-hyperbolic behaviour is expected under perturbation. As a result, the chaotic hypothesis should not be assumed to hold in all systems, and a better understanding of the domain of its validity is required.