ﻻ يوجد ملخص باللغة العربية
We report a new accelerated diffusion phenomenon that is produced by a one-dimensional ran- dom walk in which the flight probability to one of the two directions (i.e., bias) oscillates dynam- ically in periodic, quasiperiodic, and chaotic manners. The probability oscillation dynamics can be physically observed in nanoscale photoexcitation transfer in a quantum-dot network, where the existence probability of an exciton at the bottom energy level of a quantum dot fluctuates dif- ferently with a parameter setting. We evaluate the ensemble average of the time-averaged mean square displacement (ETMSD) of the time series obtained from the quantum-dot network model that generates various oscillatory behaviors because the ETMSD exhibits characteristic changes depending on the fluctuating bias; in the case of normal diffusion, the asymptotic behavior of the ETMSD is proportional to the time (i.e., a linear growth function), whereas it grows nonlinearly with an exponent greater than 1 in the case of superdiffusion. We find that the diffusion can be accelerated significantly when the fluctuating bias is characterized as weak chaos owing to the transient nonstationarity of its biases, in which the spectrum contains high power at low frequen- cies. By introducing a simplified model of our random walk, which exhibits superdiffusion as well as normal diffusion, we explain the mechanism of the accelerated diffusion by analyzing the mean square displacement.
We explore the behaviour of chaotic oscillators in hierarchical networks coupled to an external chaotic system whose intrinsic dynamics is dissimilar to the other oscillators in the network. Specifically, each oscillator couples to the mean-field of
Many important high-dimensional dynamical systems exhibit complex chaotic behaviour. Their complexity means that their dynamics are necessarily comprehended under strong reducing assumptions. It is therefore important to have a clear picture of these
Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disk, and a natural consequence of irregular motion. In this paper we show that resonant multi-planetary system
We show that the synchronized states of two systems of identical chaotic maps subject to either, a common drive that acts with a probability p in time or to the same drive acting on a fraction p of the maps, are similar. The synchronization behavior
The noise-enhanced trapping is a surprising phenomenon that has already been studied in chaotic scattering problems where the noise affects the physical variables but not the parameters of the system. Following this research, in this work we provide